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SensorWeb and Beyond

Data Organization, Information and 
Estimation [IT-2]
The Role of Communication
The Gluing Together of Systems

The Central Role of the Cohomology Group

Dynamic Gluing



Distributed Algorithms Outline

Estimation in Sensor Networks (RCA-5&6)
Information-Driven Sensor Querying 
(IDSQ) Algorithm
Problem Formulation
Distributed Algorithm
Discussion and Future Work



Nature of Information in Sensor Networks

Measurement Types
Acoustic – amplitude, direction of arrival
Seismic
Magnetic
Visual

Characteristics
Local – sensors capable of measuring quantities in a 
local region
Distributed – measurements from several sensors must 
be incorporated for a decent estimate
Redundant – all sensor measurements unnecessary



Estimation Task in Sensor Network

Usual Parameter Estimation
Given model of parameters to measurements, 
estimate the parameter when given measurements.
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Estimation Task in Sensor Network
Unique aspect in Sensor Network

Measurements to estimate parameters are distributed 
throughout different sensor nodes.
Cost of communicating measurements to a single node for 
processing is significant due to power constraints.
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Estimation Task in Sensor Network
Unique aspect in Sensor Network

Measurements to estimate parameters are distributed 
throughout different sensor nodes.
Cost of communicating measurements to a single node for 
processing is significant due to power constraints.
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Static Data Collection
Communication cost proportional to distance.
Minimal spanning tree.

Communication cost is the same regardless of what 
parameter generated data.



Dynamic Data Collection
Due to locality of sensor measurements, knowledge of the 
parameter generating the data implies only a subset of the 
sensors’ measurements need to be collected.



Dynamic Data Collection
Due to locality of sensor measurements, knowledge of the 
parameter generating the data implies only a subset of the 
sensors’ measurements need to be collected.

• We do not know what parameter generated data until data is collected.
• However, knowing a few of the sensor measurements tells us what subset 

of parameters could have generated data.



Communication Protocols

Point-to-Point
“pull” type - node queries for a remote node’s data

Auxiliary communications required
Based on local information of querying node

“push” type – node sends information to remote node
No auxiliary communications
Based on local information of sending node

Broadcast-to-a-Region
More appropriate for wireless communication
Less refined than point-to-point (no receiver specified)



Information-Driven Sensor Querying 
(IDSQ) Work funded by DARPA: SensIT program (Sri Kumar, PM)

Joint work with F. Zhao, H. Haussecker

Idea: Choose next measurement to incorporate into 
posterior distribution based on maximal information 
content.
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Measurement Models
Amplitude Time Difference of Arrival (TDOA)
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IDSQ for Stationary Target Localization

Communications
blue – query request
green – measurement value

Sensor Type
Blue square – amplitude
Red square – TDOA dipole

Target
asterisk – target location
green area – posterior distribution



Minimal Spanning Tree

Total communication distance = 187.37 ft



Comparison
IDSQ vs. Minimal Spanning Tree



IDSQ for Target Tracking

Questions
• Choosing leader node.
• Allowing concurrent 

communications.

50 sensors, randomly placed in 100x100 ft square



Data Collection Problem Formulation

Sensor Node Architecture
Definitions

Belief
Communication rule
Communication algorithm
Communication history

Problem Statement
Construction



Sensor node architecture

Sensors Receiver

Transmitter
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Belief

A belief is a collection of triples
Time
Sensor ID
Measurement Value

Set of Beliefs: 
Posterior distribution is calculated from data in a belief.
Practical representation of belief need not be a collection 
of data.

Approximate by family of parameterized distributions.
Approximate by samples from distribution like particle 
filters.
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Communication Rule and Algorithm

A communication rule is a pair
Precondition: belief
Action: send belief to subset of sensors

A communication algorithm is a function

Collection of communication rules
Action: Evaluate communication rule for the current 
belief.  If non-empty, transmit belief to appropriate 
sensor nodes.

Set of communication algorithms:
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Communication History

A communication history is a record of 
communications that have occurred from a 
set of communication algorithms.

depends on
time series of measurements
communication algorithms
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Problem Statement

Choose a set of communication algorithms 

such that 
(information constraint) some sensor node has in 
its belief enough data to compute an estimate and

(communication optimization) the average 
communication cost is minimized.
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Construction of Distributed 
Communication Algorithms

Bipartite graph representation for 
capturing information constraints
Construct a hierarchy from bipartite graph
Convert hierarchy to communication 
algorithms



Simple Sensor Network Example
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Sensor nodes measure two values {0,1}.
Estimation task is to determine whether high 
valued sensors are in triangular formations.



Bipartite Graph Representation
Information constraints

Bipartite graph
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Interpretation as Feedforward Network
Associate a boolean variable with each vertex of bipartite graph.
Higher level representations considered to be logical functions of 
boolean variables from lower level representations.
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Idea is to represent complex functions by compositions of simple
primitive functions.
Primitive functions should be associated with the primitive 
operations of original problem.



Hierarchy Construction
Primitive operation for communication algorithms is sending 
a belief to another node.
Primitive function for hierarchy is a two-input logical AND.
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Add intermediate nodes until all nodes are associated with 
primitive functions.



Hierarchy Construction
Primitive operation for communication algorithms is sending 
a belief to another node.
Primitive function for hierarchy is a two-input logical AND.
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Hierarchy Construction
Primitive operation for communication algorithms is sending 
a belief to another node.
Primitive function for hierarchy is a two-input logical AND.
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Hierarchy Construction
Primitive operation for communication algorithms is sending 
a belief to another node.
Primitive function for hierarchy is a two-input logical AND.
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Hierarchy Construction
Primitive operation for communication algorithms is sending 
a belief to another node.
Primitive function for hierarchy is a two-input logical AND.
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Resulting hierarchy where every node is associated with a 
two-input logical AND.



Hierarchy to Communication Algorithm

Assign hierarchy nodes to sensor nodes.
Read off communication rules.
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Resulting Communication Algorithms
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Distributed Algorithm for Stationary 
Target Localization

Concurrent communications can occur for faster data collection.
Only a single node carries the global belief after all communication 
have settled.



Comparison
Distributed Algorithm vs. IDSQ

Percent better: 80.5%
Distributed Mean: 149.4
IDSQ Mean: 206.2



Discussion and Future Work

Two modes of data collection
Distributed algorithm

Estimate quality poor
Generous data collection

IDSQ
Estimate quality good
Parsimonious data collection

Tracking
Use distributed algorithm to initialize tracker and 
determine leader.
Use modified IDSQ to perform tracking.



Conceptual Problem

What we have done

How are open nonlinear dynamical systems composed of 
an interconnected assembly of subsystems?
How are automata composed of an interconnected 
assembly of (sub-)automata?

Our problem is vastly more difficult than Krohn-Rhodes



Gluing Systems

Local Behavior
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Examples
Our cohomology theory: nontrivial, discriminates between systems

Example 1 (underlying graph is exactly a cycle)

Example 1 Example 2

H1= invariant differential operators on a real line H1= 0

Recall: representation theory of invariant differential operators >
origin of harmonic analysis.  The latter underlies most of LTI 
systems in signal processing & control
Example 2 (Underlying graph a linear tree - gluing of ends 
absent)
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Codes from Languages
From automata, we produce a sequence of error-correcting codes. 
Suitable projections of the inclusions 

{degree-r cocycles in the cohomology}⊂{degree-r cochains}

Cohomological nature of codes > a conceptual platform to analyze 
the distance of codes
Yields almost a dictionary: languages > codes.                
Languages - studied extensively

Why Build Codes in This Way?
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