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Abstract

Many pervasive computing applications require location
awareness in order to successfully integrate technology into
our daily lives. A location system consists of a group of
sensors that determine the position of a mobile user and
provide the user with useful context-specific information.
Locating the user requires signal exchanges between the
user’s mobile device and the sensors. This paper considers
an acoustic-based location system for pervasive computing
applications. The system is comprised of a set of micro-
phones connected to a central server. Mobile users produce
acoustic signals through standard speakers, which are al-
ready available in most mobile devices, to perform location
operations through the system. We focus on the design of
robust acoustic signals using multi-frequency symbols that
serve both in locating and uniquely identifying the user. We
conduct experiments at distances between 1 and 17 ft to ex-
plore the ability of the server to recognize and decode sig-
nals originated by different users in the same general area.

1. Introduction

Most pervasive computing applications require location
awareness in order to successfully integrate technology into
our daily lives. A location system consists of a set of sensors
that determine the position of a mobile user and provide the
user with useful context-specific information. Locating the

user requires signal exchanges between the user’s mobile

device and the sensors.

Here, we present work that is part of a project to de-
sign an acoustic location system that combines the benefits
of a computer network with the intrinsic worth of location-
awareness for roaming users in the physical world. In this

0-7803-8577-2/04/$20.00 ©2004 IEEE

Cristina Videira Lopes
UCI/School of Information
and Computer Science
Center for Pervasive Comm.
and Computing
lopes@ics.uci.edu

Pierre Baldi
UCI/School of Information
and Computer Science
California Institute for
Telecomm. and Information
Technology Cal-(IT)?
pfbaldi@ics.uci.edu

context, a user equipped with a roaming device will be able
to obtain on-demand user and location-specific information.
Applications for this system include cheap and easily de-
ployable location systems, extensions to web protocols, and
location-dependent multi-user games. Areas of deployment
include places that have been to a large extent abstracted
on the Internet, such as retail stores, shopping malls, mu-
seums, amusement parks, and other places where people
seek related information, and eventually pay for products
and services. The main contribution of this paper is to ex-
plore the design of robust acoustic signals for locating and
identifying multiple users within the coverage area of the
location system.

The rest of the paper is organized as follows. Section 2
reviews the previous related work. Section 3 provides an
overview of the operation of the acoustic location system.
Section 4 discusses the frequency encoding and transmis-
sion of symbols which are the building blocks of user ID’s
in our system. Section 5 discusses mainly the mechanisms
involved in detecting the frequency content and in decoding
the symbols contained in the received acoustic'signal. Sec-
tion 6 presents the experiments we performed to validate
this encoding scheme for acoustic location and identifica-
tion. Section 7 discusses the results of the experiments and
concludes the paper.

2. Related Work

Several location systems [1] have been proposed to pro-
vide location awareness in a ubiquitous computing environ-
ment. In Active Badge [2], which is one of the earliest pro-
posed location systems, users wear badges that emit diffuse
infrared signals. Pre-installed sensors detect the infrared
signals and report them to a central server to determine the
user’s location. Infrared waves have several undesirable
features for location systems, including interference from
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florescent lighting and sunlight.

Other location systems, such as Active Bat [3] and
Cricket [4], rely on ultrasound signals. Active Bat’s archi-
tecture is similar to Active Badge in that it requires mobile
users to wear ultrasound tags, and ceiling-mounted ultra-
sound receivers capture the tag’s signal and report it to the
central server. Active Bat uses an ultrasound time-of-flight
lateration technique, in which the user sends both an ultra-
sound and radio signal, and the system computes the differ-
ence in arrival times between the two signals to determine
the user’s position. Cricket enhances Active Bat by using
the radio signal arrival time to narrow the time window in
which arriving signals are considered. Dolphin [5] is an-
other ultrasound positioning system that has a distributed
flavor. In Dolphin, the location of only a few nodes is
known, and the remaining nodes can infer their own loca-
tion based on the location of the reference nodes. Nodes in
Dolphin also send messages periodically to advertise their
position and to maintain synchronization.

Because of their reliance on technologies such as in-
frared and ultrasound, most existing location systems often
require the user to carry additional hardware such as badges
or tags. Requiring additional specialized hardware on the
user side introduces cost and feasibility issues, which in turn
limit the large-scale proliferation of existing systems.

Other location systems proposed the use of hardware that
is already found in mobile devices. RADAR [6] uses the
signal to noise ratio and signal strength of a mobile user’s
IEEE 802.11 [7] transmissions to locate the user in a 2 di-
mensional environment. One drawback of the RADAR sys-
tem is its assumption that the mobile device is equipped
with IEEE 802.11, which does not apply to all mobile de-
vices. Security and privacy also arise as important issues in
radio frequency location systems: the system can track the
user without the user knowing it.

Unlike WLAN technologies that are not available in
smaller mobile devices and that are protocol dependent, the
acoustic interface is available in virtually all mobile de-
vices and is universally compatible. Acoustic technology
has been recently considered for ubiquitous computing and
communications applications. Lopes and Aguiar [8] have
explored the use of musical sounds or other familiar sounds
for low bit rate communications using hardware that is read-
ily available in desktop computers, palm devices, memo
recorders, televisions and other electronic devices. Simi-
larly, our aim is to use sounds that are easily reproducible
by most mobile devices for indoor location.

The work in [9] considers an outdoor location system
based on a network of acoustic sensors to provide high lo-
cation accuracy at considerable monetary cost for military
and scientific applications. The system in [9] assumes a
fully distributed self-organizing architecture where the sen-
sors discover the topology and integrate into the network,

which adds complexity and cost to the sensors themselves.
In contrast, the design goal of our system is the develop-
ment of an indoor acoustic positioning system with reason-
able accuracy for cheap and easy deployment. Our system
adopts a centralized topology, where microphones are only
input devices through which the acoustic signals are relayed
to the centralized server. Furthermore, the system in [9]
employs complex algorithms for sensor synchronization, as
well as beamforming techniques to determine the direction
from which the signal arrives at the microphone. On the
other hand, our system uses simple UDP sockets for tempo-
rary synchronization between the server and sensors, which
eliminate the overhead for continuous synchronization be-
tween the sensors. Qur system also replaces complex beam-
forming techniques with basic triangulation' at the server to
reduce the latency of a location operation.

The work in [10] also proposes the use of acoustic waves
for indoor location systems, as well as for low bit rate com-
munications. In [10], Madhavapeddy et al. consider several
audio modulation techniques, including Dual Tone Multi-
Frequency (DTMF), melodic sounds, and inaudible signals
at the border of the acoustic range. In Madhavapeddy’s
acoustic location architecture, one of several listeners de-
tect the acoustic signal and report the signal characteristics
to a central server. Our system uses a similar architecture
to determine the user’s location but with finer granularity.
While the location system in [10] aims to identify the room
in which the user is located, our system employs acoustic
signals to locate a user’s approximate position within the
room.

3. System Overview
3.1. Signal Description

Mobile users in Madhavapeddy’s acoustic location
scheme emit a single tone signal at 800 Hz. From a tech-
nical viewpoint, we believe that the use of a single acous-
tic tone to locate and identify users is insufficient because
frequency-specific noise impulses (or their harmonics) in
some indoor environments may prevent the listeners from
capturing the correct signal from the user. Furthermore, us-
ing a single tone signal does not support multiple simultane-
ous users. Madhavapeddy’s main motivation in using a sin-
gle frequency for the location operation is that the base ca-
pability of mobile phones is to produce monophonic tones.
However, phones capable of producing polyphonic tones
are becoming increasingly popular. Other mobile devices

! Triangulation at the server uses multiple distance measurements from
different microphones [1]. Around each microphone, the server considers
a sphere with the reported distance of that particular microphone. The
location of the user is then computed as the intersection of the spheres
around the microphones that report the shortest distances.
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Figure 1. System Architecture and Location
Operation.

such as handheld devices and pocket PC’s are already ca-
pable of producing polyphonic tones. Thus, our acoustic
location and identification scheme combines two variants
of Madhavapeddy’s proposed modulation techniques:

1. We use 3 frequencies to represent each symbol in our
alphabet, while DTMF uses 2 frequencies to represent
each symbol in touch/tone phones. Using 3 frequen-
cies provides redundancy that increases the signal’s ro-
bustness to frequency-selective interference and fad-
ing.

2. We choose the frequencies that belong to the same ma-
jor musical scale, as suggested in [8], to represent each
symbol in our alphabet.

3.2. Architecture

The system architecture includes a set of listening de-
vices (microphones) that are connected to a central server,
as shown in Figure 1. Figure 1 shows a simple scenario
where four microphones, which are mounted in a grid for-
mation on the ceiling of a room, are also connected to a
server that stores a map of the room. The distance between
microphones is assumed to be sufficiently small to ensure
that at least three of the microphones detect the acoustic
signals from any area within the room.

3.3. Location Operation

We illustrate the sequence of events involved in a loca-
tion operation through the following example. Consider a
customer that is seeking directions to the appliances section
in a large department store, which already has a deployed

wireless data network such as IEEE 802.11 [7] or Blue-
tooth [11]. The customer’s mobile device is also assumed
to have a wireless data communications capability. Conse-
quently, the store data network can assign the mobile device
an IP address through DHCP so that the location system can
identify the device on the data network.

The customer can issue a location query through his
mobile device to request directions, and the server subse-
quently provides the requested directions. However, the
server must first determine the current location (context) of
the customer within the store before providing the customer
with detailed directions to the appliances section. To en-
able the server to locate the user, the mobile device sends
its ID (see Section 4) in the form of acoustic signals. At
least three of the ceiling-mounted microphones detect these
acoustic signals. In the topology of Figure 1, microphones
A, B and D detect the user’s acoustic ID. In general, each
microphone that detects the signal reports it to the central
server. The server should then estimate the distance of the
user from each microphone. Using absolute signal strength
to estimate distance is not reliable in this application be-
cause the amplitude of the acoustic signal varies among mo-
bile devices. Instead, the server uses time measurements
to estimate the distance of the user from each microphone.
The steps involved in distance estimation are the following:

1. While the server is constantly listening for client re-
quests, the client on the mobile device notifies the
server through the wireless data network that it is about
to send its acoustic ID to initiate a location query.

2. The client then immediately sends the acoustic signal
encoding of its ID. The server can compute the latency
between the end of the notification signal received on
the data network and the beginning of the acoustic sig-
nal. Based on this latency and the propagation char-
acteristics of both signals, the server estimates the dis-
tance of the user from a single microphone.

Our preliminary experiments have shown that the server
can determine the distance of the sound source located at a
distance of up to 22 ft with an error of 6 inches for a sin-
gle frequency signal. After estimating the distance of the
user from each microphone, the server uses triangulation to
determine the current location of the user, as shown in Fig-
ure 1. Once triangulation yields an estimate of the user’s
location, the server uses its locally available store map to
determine the proper directions from the user’s current lo-
cation to the appliances section. The server can then send
directions to the user through the wireless data network.

In other settings where the mobile device does not have
a separate communications capability, the system could
use relative received signal strengthes from various micro-
phones to estimate the user’s location. Subsequently, the
system can use a modulated acoustic signal, as described
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in [8] and [10], to provide directions to mobile devices that
are equipped with microphones.

4. Signal Encoding and Transmission
4.1. Acoustic ID’s

We now focus on the structure of the acoustic signal.
The signal encoding serves both in locating the user and in
uniquely identifying the user among all current users within
the room. The purpose of embedding a unique ID into the
location signal is twofold. First, in the absence of a sepa-
rate data network with its own addressing scheme, acoustic
ID’s provide a way to uniquely identify users in the cover-
age area and to route information to users. Secondly, if two
or more users simultaneously issue location queries, ID’s
enable the server to determine the source of each query.

Assigning unique ID’s requires mobile devices to regis-
ter with the server upon entering the coverage area of the
location system. During the registration process, the user
requests an acoustic ID along with an IP address to iden-
tify him/her uniquely among other users within the cover-
age area. Once the system assigns the user an ID and an IP
address, the user can roam within the coverage area and use
the assigned ID to initiate location operations.

4.2. ID encoding

We use a coding scheme similar to the DTMF scheme
to encode each symbol. DTMF encodes each digit using 2
separate frequencies in the range 697 to 1633 Hz. Frequen-
cies in DTMF are classified as high and low frequencies,
and DTMF encodes each digit using one low and one high
frequency. As a result, some pairs of digits in DTMF have
one frequency in common. Consequently, if a receiver de-
tects only one of the two frequencies of a DTMF symbol,
it is impossible to decode that symbol. This becomes more
of an issue for wireless acoustic communication, which has
higher signal losses than the intended application area of
DTMF in wired phone lines. Even if no frequencies are
lost, the common frequencies among digits in DTMF may
prevent receiver from deterministically identifying 2 digits
received simultaneously over the air. Thus, we propose en-
hancements to DTMF in our coding scheme to provide a
more robust signal that meets the needs of wireless acous-
tics.

4.2.1 Symbols and Frequencies

Our coding scheme uses an alphabet of 3 symbols, which
is easily extendible to 6 or more symbols. These symbols
form the building block of user ID’s, since each combina-
tion of symbols represents a unique user ID. Each symbol

Digit | Freq1 | Freq 2 | Freq3 Scale
1 2794 | 3520 | 4186 | F Major
2 3136 | 3951 | 4699 | G Major
3 2489 | 2960 | 3729 | D#Major

Table 1. Frequency Encoding of Symbols

is encoded using 3 frequencies, and unlike DTMF, there
are no common frequencies among any two symbols. The
choice of using 3 frequencies to encode each symbol stems
from the fact that the microphones may not detect all the
transmitted frequencies. This redundancy, together with the
property that each frequency correlates only to one symbol,
ensures that symbols are correctly decoded by the server
even if some frequency components are lost. Our scheme
requires the receiver to detect two out of the three frequen-
cies? that represent a symbol to decode that symbol.

We use frequencies in the range of 2200 to 4700 Hz,
since this band is less susceptible to indoor background
noise, which we observed to be at frequencies below 2 Khz.
Another motivation for using frequencies in the range 2.2
Khz-4.7 Khz is that the speakers of many mobile devices
operate well in that range.

Unlike other communication technologies, acoustic sig-
nalling and communications can be perceived by humans.
As a result, any wireless acoustic system should ensure that
the emitted signals are pleasant, or at least tolerable, to the
human auditory system. To address this issue, each set of
three frequencies that represent a symbol in our system be-
long to the same major musical scale, so that sending an
audio signal for a single symbol does not annoy users.

As mentioned earlier, the coding scheme encodes 3 sym-
bols using 9 frequencies, where each symbol is the sum of
three sinusoidal signals at frequencies which lie on the same
major scale. Table 1 indicates the frequencies that encode
each symbol, and the musical scale on which each set of
three frequencies fall. Note that all frequencies in Table 1
are separated by at least 150 Hz, so that any frequency shifts
due to hardware variations do not result in false ID’s.

In addition to the musical scales in Table 1, we are ex-
ploring several other musical scales, such as the blues major
scale, the blues minor scale and the flamenco scale, for pro-
ducing acoustically pleasant ID’s.

2The requirement of receiving two out of three frequencies for each
digit may be overly redundant for some environments with predictable
noise patterns. This requirement could be relaxed to one out of three fre-
quencies, which would increase the range of detection of a user, but it
would also increase the probability of error in location and identification.
The modified scheme could also triple the number of users by using one
frequency to identify each user, at the cost of decreased reliability.
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Amplitude

Figure 2. Signal shape of the transmitted ID
[1,2,3].

4.2.2 Reverberation

Ideally, a mobile device would send each symbol immedi-
ately after the preceding symbol. In reality however, acous-
tic waves in a room undergo reverberation due to the reflec-
tion of sound within the room [12]. Reverberant sound in
a room dies away as the sound energy is absorbed by mul-
tiple interactions with the surfaces of the room. Thus, the
ID encoding scheme requires a guard time between each
two symbols to reduce the effects of reverberation from one
symbol to the next. Figure 2 plots the signal of ID [1,2,3]
with the symbols separated by 9.7 millisecond guard times.
Figure 3 shows the same ID as it is captured by the receiver.
The symbol boundaries in Figure 3 are still visible at the
guard times, where only reverberant sound with decaying
amplitude is present. In addition to guard times, our algo-
rithm compares the amplitude of the frequencies in arriv-
ing signals. If during a time slot the ratio of amplitudes of
two symbols is above a certain threshold, then the symbol
with the lower amplitude is regarded as reverberation from
neighboring time slots.

4.3. Synchronization

Our scheme requires mobile devices to issue a hello sig-
nal at the beginning of an acoustic transmission to allow the
server to synchronize to the transmission. We define the
hello signal in our system as a sinusoidal signal at a known
frequency. We reserve the frequency of 2200 Hz as the hello
frequency. This value for the hello frequency is appropriate
because: (1) it is within the optimal range of operation of
speakers and microphones; (2) it maintains a guard band of
200 Hz from the noisy indoor spectrum below 2000 Hz; (3)
it maintains sufficient separation from the nearest symbol
frequency, which is at 2489 Hz; (4) its harmonic at 4400 Hz
maintains ample separation from nearby symbol frequen-
cies.

Amplitude

Samples

Figure 3. Signal shape of the received
ID[1,2,3): The amplitude values are normal-
ized.

A related design choice for the hello signal is whether to
send it just before the start of an ID, or to embed it within
the first symbol of an ID. Initial testing of these two cases
has revealed that the server synchronizes more accurately
to the signal when the hello signal is embedded in the first
symbol of the ID. Furthermore, synchronizing to the hello
signal requires that it is at least a few milliseconds long,
which implies that sending the hello signal prior to the ID -
incurs more delay in the decoding process. Consequently,
our scheme includes the hello signal with the first symbol
of each ID.

5. Signal Reception and Decoding
5.1.ID Decoding

‘We begin by describing the decoding procedure for one
symbol, and we later extend that process to decode se-
quences-of symbols that represent ID’s. Once the acoustic
signal is received by the microphone, the signal must be de-
coded in several steps with increasing granularity. First, the
receiver discovers the beginning of the useful signal by syn-
chronizing to the hello frequency. Once the server synchro-
nizes to the mobile device’s signal, it partitions the acoustic
signal into time slots with one symbol duration per time slot.
The server then proceeds to discover the frequency content
in each time slot. We use the Fast Fourier Transform (FFT)
to transform the time domain acoustic signal in each time
slot to the frequency domain. Let 2 be the received time do-
main acoustic signal after sampling, and Z be the frequency
domain representation of z. To derive the frequency content
of Z, we use the equation:

P,, =Z x conj(Z)/NZ ¢
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where P,, is the power spectrum of the signal, and Nz is
the number of points (samples) in the signal.

Next, we implicitly filter the signal by examining the
samples of P,, corresponding to the frequencies in Table 1.
In fact, for each frequency f in Table 1, we examine the
values of components of P, , in a small range of frequencies
centered around f in order to account for hardware imper-
fections that lead to frequency distortion. As we mentioned
above, the frequencies in Table 1 are spaced far enough
from each other so that a shift in one frequency does not
crossover to the window of the neighboring frequency. If
the value of P,, exceeds a threshold value at or close to
a frequency f, then the server determines that f is present
in the signal. Section 6.1 provides a more detailed discus-
sion of setting the threshold. Once two or more frequencies
that correspond to the same symbol are detected, the server
. determines that the symbol is present in the signal. By per-
forming this quick check in subsequent time slots, the server
can decode a sequence of digits to get the received ID.

5.2. Synchronization

Discovering the frequency content using the FFT method
is applicable to individual time slots once the boundaries
of each time slot are defined. Defining the boundaries of
time slots requires discovery of the beginning of the first
time slot, which is achieved by synchronizing to the hello
frequency.

Once the server captures the signal, it uses a sliding win-
dow technique to discover the start of the signal. First, the
server examines chunks of the signal that are equal in length
to the embedded hello signal. Once it identifies the sec-
tion of the received signal with the highest correlation to the
hello signal, the server then narrows the window of search
for the hello signal to that section. Within that section, the
server examines the signal samples in smaller chunks. By
progressively shrinking the window size and the chunk size,
the server eventually identifies the sample that corresponds
to the beginning of the hello signal, which is also the begin-
ning of the first time slot in the ID (see section 4.3).

Synchronization to the beginning of ID’s is even more
valuable when several mobile users simultaneously perform
location operations. Figure 4 illustrates the case of a mobile
device sending its ID while the server is still in the process
of receiving another user’s ID. Suppose the server receives
the acoustic ID of mobile device A at time ¢, and the du-
ration of a symbol is T. The receiver synchronizes to A’s
transmission by detecting the start of the hello signal, and
begins decoding the ID of A. Suppose also that at time ¢t +a,
where a is shorter than the duration of an ID, the receiver
hears another transmission from user B. In Figure 4, the
acoustic ID of B arrives at the server during the second time
slot of A’s transmission. While decoding the second sym-

Digit 1 (A)
+ Digit 2 (A) Digit 3 (A)
Hail
| i ! | !
—————pl | time
| a | ! I
i |
1 |
| i
| 1 Digit 1 (B)
| 1 + Digit 2 (B} Digit 3 (B)
| | Hail
1 !
} |
1 1 L
t t+7T t+a t+2T
time

Figure 4. Synchronization

bol in A’s ID, the server detects that the hello frequency is
present in the signal. As a result, the server synchronizes to
the new transmission by performing a correlation check to
synchronize to the hello signal of the new transmission, and
initiates a separate thread to derive the frequency content of
this transmission. Between time t + a and the end of A’s
ID, the frequency content of the received signal is the com-
bination of symbols sent by A and B. The FFT method de-
tects up to six frequencies in each time slot, but the method
cannot determine the source of each frequency. Thus, iden-
tifying the received ID’s requires the following additional
steps.

User A’s second symbol had started arriving at time 47,
so the server can identify the frequencies of A’s second sym-
bol by checking the frequency content between ¢ + 7" and
t + a. The server can also determine B’s first digit by omit-
ting A’s frequency content from the total frequency content
received between time ¢ + @ and ¢ + 27". To decode sub-
sequent symbols of each ID, the server determines the fre-
quency content of each time slot in the same way.

6. Experiments and Results

In order to validate our ability to detect multiple fre-
quencies and symbols simultaneously through acoustic sig-
nals, we conduct experiments in an office of dimensions
18 x 9 x 9 ft, using a typical PC microphone and speak-
ers. In the experiments, the PC speakers send the frequen-
cies corresponding to the encoded symbols through the air.
The microphone then captures this audio signal, and once
the sound card samples the data, we use Matlab [13] to per-
form an FFT analysis to determine the frequency content of
the captured signal. Table 2 contains the parameter values
in our experiments.

Each experiment was performed on five different occa-
sions, and the results reflect the average of the five trials.
The variance of results among separate trials of each exper-
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Table 2. Parameter Values

Parameter Value
Sampling Frequency (hz) 11025
bits/sample 8
Symbol duration (samples) 1000
Symbol duration (ms) 90.7
Guard time (samples) 100
Guard time (ms) 9.07
Room Dimensions (ft) 18x9x9

iment was small, which suggests deterministic behavior of
the system.

The first set of experiments explores the effects of dis-
tance, frequency selection, and number of simultaneously
emitted frequencies on our ability to detect transmitted fre-
quencies. The second experiment set investigates the de-
coding capability of the server to synchronize to and decode
two asynchronous acoustic ID’s that overlap in time.

6.1. Frequency Detection

We first explore the effect that simultaneous symbol
transmisstons has on the server’s ability to detect individual
symbols. A central feature of frequency detection ability
in our scheme is the threshold value in the FFT method (see
Section 5.1). Setting the threshold value involves a tradeoff:
a high threshold value insures that noise is not mistaken for
a useful signal, but it also results in failure to detect some
frequencies. On the other hand, setting the threshold too
low allows detection of more frequencies, but it also in-
creases the chance of false positives from noise. Thus, for
each number of simultaneous symbols, we observe the min-
imum threshold value within the FFT method that results in
detection of all frequencies. We also use random combina-
tions of the symbols (1,2,3) to avoid any biases introduced
by frequency-specific behavior of the hardware used in our
experiments.

Figure 5 shows the relative threshold value for the server
to detect all the transmitted frequencies. For distances rang-
ing from 1 ft to 17 ft, the server could detect all the fre-
quencies in the cases of 3, 6 and 9 simultaneously transmit-
ted frequencies. However, the required threshold value for
detecting each frequency using the FFT method (see sec-
tion 5.1) becomes lower as the number of simultaneous fre-
quencies increase.

The detection threshold for 6 simultaneous frequencies
(2 simultaneous symbols) is about 44% of the detection
threshold of one symbol. Also, the threshold for 9 frequen-
cies (3 symbols) is 36% of the 1 symbol threshold. The
minor decrease in the detection threshold as the number of
frequencies increases from 6 to 9 suggests that the received
signal level degrades more slowly as more frequencies are
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Figure 5. The normalized threshold value in
FFT method for full frequency detection as a
function of distance.

added. This feature is desirable for the scalability of the
scheme.

The threshold and distance experiments revealed distinct
channel responses for each combination of frequencies. To
understand the channel frequency response for our hard-
ware and to quantify these distinctions, we studied the re-
quired threshold for different symbol combinations. Be-
cause acoustic location systems do not necessarily use the
same hardware or frequency set, the results in this study ap-
ply only to our particular setting. These results also serve
as a basis for the development of a general process that cal-
ibrates thresholds for any hardware or frequency set.

Figure 6 provides a threshold comparison of all possible
symbol combinations. Symbol (3) has the highest threshold
among all symbol combinations. Symbol (2) and symbol
(1) have respective relative thresholds of 0.7 and 0.19. Two
symbol combinations follow similar trend to the single sym-
bol case, where the pair of symbols with the highest thresh-
old is (2,3), and the pair with the lowest threshold is (1,2).
The combination of the three symbols (1,2,3) has a thresh-
old that is higher than both combinations (1) and (1,2). The
results have 2 clear implications: (a) Symbol (1) contains
frequencies with unfavorable channel response, and thus all
combinations containing this symbol have low thresholds.
(b) Symbol (3) contains frequencies with favorable chan-
nel response, and the presence of symbol (3) in a time slots
improves channel response for other symbols (1 and 2).
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Figure 6. A comparison of the normalized
thresholds of frequency combinations.

6.2. Symbol Decoding

The next set of experiments investigates the server’s abil-
ity to recognize two distinct ID’s arriving asynchronously.
These experiments reveal that the main issue of correct de-
coding is synchronization to the hello frequency through the
correlation algorithm (see Section 5.2). As the distance in-
creases, the hello signal strength at the server is lower, and
the correlation check at the server is more likely to yield an
incorrect beginning of the signal. This degradation with dis-
tance applies mainly to synchronization to the hello signal,
and does not affect the detection of the frequency content
as the experiments in Section 6.1 reveal. Thus, we explore
the effect of both the hello frequency amplitude and the dis-
tance on the server’s capability to decode 2 asynchronous
symbols.

Figure 7 plots the percentage of symbols that are cor-
rectly decoded by the server as the distance between the
users and the sensors varies from 1 ft to 17 ft. Each of
the three plots in Figure 7 is characterized by the ratio of
the amplitude of the hello frequency to the amplitude of
the symbol frequencies. For example, the plot for "Am-
plitude=2" indicates that the hello frequency amplitude is
double the amplitude of the symbol frequencies.

When the hello frequency amplitude is the same as the
amplitude of all other frequencies, the server can synchro-
nize to and decode only one of two acoustic ID’s arriving
asynchronously. The decoding ability does not vary with
distances of 1 to 13 ft, as the percentage of decoded ID’s
remains around 50%. Occasional peaks in the decoding
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Figure 7. Percentage of decoded symbols ver-
sus distance.

ability at distances of 2 ft and 8 ft are due to both hard-
ware variations and multi-path reflection effects within the
experiment location. For distances of 14 ft or more, the
decoding ability drops to 40% because the hello frequency
attenuation at these distances makes it more difficult to syn-
chronize properly to the acoustic ID. On average, the server
could decode 49% of the transmitted ID’s for all distances
within 17 ft.

If the hello frequency amplitude is doubled, the decoding
ability at the server improves significantly. First, doubling
the hello frequency amplitude eliminates the effect of dis-
tance on the decoding ability. As Figure 7 shows, the trend
in decoding ability is constant for all distances within 17
ft. A second observation is that the decoding ability varies
between 80% and 100% in a seemingly random fashion.
Again, this is attributed to multi-path effects and to varia-
tions in the delay and response of the sound card according
to the interrupt behavior and processing load at the host de-
vice. Overall, the server could decode 89% of acoustic ID’s.

Finally, the plot for "Amplitude=3" eliminates much of
the variation in decoding ability that was observed for the
previous case. Because the hello frequency amplitude is
now triple that of symbol frequencies, the server can syn-
chronize better to both acoustic ID’s at all distances within
17 ft. The decoding ability of the server is perfect for most
distances, and on average the server could decode 98% of
the transmitted acoustic ID’s.
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7. Discussion and Conclusion
7.1. Background Noise

Some of the results were derived with music and other
clutter noise sources in the background. Although exposure
to noise sources was not systematic in all experiments, the
ability of the server to decode symbols in the presence of
clutter noise boosts our confidence in the coding scheme.

7.2. Thresholds

Detection of symbol frequencies is not as dependent on
the amplitude as synchronization to the hello signal, primar-
ily because the server can detect symbol frequencies as the
mobile device moves further from the receivers by lowering
the detection threshold in the FFT method. Further research
is required on algorithms to set these thresholds adaptively,
especially when there are simultaneous transmissions from
nodes that are both near and far from the microphones. Be-
cause the server aggregates the received signals from sev-
eral microphones, the effect of simultaneous transmissions
from near and far nodes should be minimal.

7.3. Range

The receiver could detect all frequencies within a range
of 17 ft, and the hello frequency amplification enables the
decoding of 2 asynchronous symbols at up to 17 ft. Future
work will explore an extended range at distances up to the
single frequency detection range (currently 22 ft) in larger
deployment areas. The experiments will reveal the appli-
cability of multi-frequency ID’s over larger ranges and in
more diverse multi-path environments.

The importance of range in this system is offset by the
fact that microphones are cheap. Thus, deploying a dense
grid of ceiling-mounted microphones, each with a limited
signal detection range, is cost-feasible. A dense grid of mi-
crophones would enable the location system to capture any
acoustic signal within the coverage area.

7.4. Calibration

Because the aerial acoustic channel includes the speak-
ers, air, and microphone, channel behavior may be
hardware-specific. Thus, calibration may be needed at some
point prior to sending the acoustic ID’s. The results in Fig-
ure 6 provide valuable insight into the hardware response to
the current choice of frequencies. For example, the chan-
nel has unfavorable response for the frequencies of symbol
1. Also, the channel has nonlinear behavior for various fre-
quency combinations. Observing the specific responses of

several speaker and microphone sets provides understand-
ing on the trends in channel response, which can subse-
quently be developed into a calibration process.

7.5. Secﬁrity and Privacy

This acoustic location and identification system provides
a user with valuable context-specific information, but it also
raises security and privacy issues. For example, department
stores could track users’ movements and behavior within
the store, and use data mining techniques to market specific
products to users. Therefore, the location system should
include security measures to ensure the privacy of users.

In sum, we have presented a model of an acoustic lo-
cation and identification system that uses unique user ID’s
based on multiple-frequency symbols. We have investigated'
the range of detection of 1, 2 and 3 simultaneously transmit-
ted symbols using 3, 6 and 9 frequencies respectively. The
results have yielded a range of at least 17 ft for up to 9 si-
multaneous frequencies. Our other experiment has revealed
that decoding asynchronous symbols at the server is highly
dependent on synchronizing to the hello signal. To over-
come this issue, we have proposed an increase in the ampli-
tude of the hello signal by a factor of 2 or 3. Once the server
synchronizes to the signal, symbol decoding becomes inde-
pendent of distance. As a result, the acoustic identification
scheme scales well for indoor location systems deployed in
large rooms.
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