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Abstract

Due to lack of experimental data and sophisticated mod-
els derived from such data, most data processing algorithms
from the sensor network literature are evaluated with data
generated from simple parametric models. Unfortunately,
the type of data input used in the evaluation often signifi-
cantly affect the algorithm performance. Our case studies
of a few widely-studied sensor networks data processing al-
gorithms demonstrated the need to evaluate algorithms with
data across a range of parameters. In the end, we propose
our synthetic data generation framework.

1. Introduction

Sensor network research is still in its infancy. Due to lack
of experimental data from deployed systems and sophisti-
cated models derived from such data, most data process-
ing algorithms from the sensor network literature are eval-
uated with data generated from simple parametric models
(i.e., models defined by a set of parameters). For example,
uniform or Gaussian data input has been commonly used to
evaluate data collection and estimation algorithms. Unfor-
tunately, the type of data input used in the evaluation often
significantly affect the algorithm performance.

We identify a few widely-studied classes of problems
that are potentially sensitive to data input: Statistics esti-
mation of the field data; Data compression; and Field esti-
mation. We use them as examples to investigate the depen-
dency of algorithm performance on data. Due to the space
limitations, we present results on instances of the first and
third class of problems, namely, a median computation and
an adaptive sampling algorithm. Using experimental data
sets, we demonstrate how different data input can change
the algorithm performance dramatically, the performance
comparison between two algorithms may even change de-
pending on the different data inputs. Further, we propose an
experimental-oriented synthetic data generation framework

to generate realistic data sets with a wide range of parame-
ters.

2. Case studies of the algorithm’s perfor-
mance dependency on data input

Median Computation: We evaluate a uniform sampling
based median computation algorithm against 4 data sets:
data generated from uniform, Gaussian, and Bimodal dis-
tribution; and the S-Pol radar data set1.

Our statistical analysis consists of three key steps. First,
we define our performance metric to be normalized esti-
mated median error, defined as the normalized difference
between the estimated median and the real median. Sec-
ond, we identify the relevant data characteristic to be nor-
malized median bin size, which is defined as the ratio of
the size of the median bin relative to the size of the en-
tire data set. In an equally spaced histogram, median bin
is the bin that includes the median. As a final step, we sta-
tistically study how the algorithm performance varies with
changing data characteristics. Both scatter plots (Figure 1)
and correlation coefficients suggest that the algorithm per-
formance is well correlated with our defined data character-
istic. Further, in terms of the normalized median bin size,
the experimental data sets cover a wide range of parameter
space not covered by any single distribution (for each distri-
bution family, we vary the parameter across a wide range).
We believe this result strongly suggest the importance of ex-
perimental data in algorithm evaluations.

Adaptive Sampling: As an alternative to raster scan, Fi-
delity Driven Sampling [1] is an efficient way to sample
the environmental field. Following the Fidelity Driven Sam-
pling operation (or raster scanning data acquisition), the re-
turned sample points are used to reconstruct the environ-
mental field. We define the performance evaluation met-

1 S-Pol (S band polar metric radar) data were collected during the In-
ternational H 2O Project. The S-Pol radar data provided by NCAR
records the intensity of reflectivity in dBZ. We acknowledge NCAR
and its sponsor, the National Science Foundation, for provision of the
S-Pol data set.
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(a) Results on experimen-
tal data, correlation coeffi-
cient= -0.8239

(b) Results on Gaussian,
uniform, Weibull and expo-
nential distributed data, cor-
relation coefficient=-0.7818

Figure 1. Scatter plot of normalized estimated
median error vs. normalized median bin size:
with increasing normalized median bin size,
the estimation error decreases. Further, the
experimental data covers a super set of all 4
families of data distributions and more.

ric as the Mean Squared Error (MSE) between this recon-
structed field map and the ground truth.

When evaluated with data simulated from linear and
quadratic models, the Adaptive Sampling performs several
magnitudes better than Raster Scan in terms of MSE (Fig-
ure 2(a)- 2(b)). However, when evaluated with the experi-
mental data, the MSE obtained from Adaptive Sampling is
very close to or worse than the MSE obtained from Raster
Scan (Figure 2(c), 2(d)). This may suggest that the evalua-
tion results from data input solely based on simple paramet-
ric models may be misleading. Evaluating algorithms us-
ing experimental data with various features helps identify
the regime of the parameter space where the algorithm may
perform well compared to other alternatives.

3. Algorithm evaluation with realistic data in-
put across a wide range of parameters

The huge parameter space of data input makes ex-
haustive exploration of parametric models impractical. By
driving simulations from previously collected experimen-
tal data, we focus our testing on the part of parameter space
that matters in reality.

Existing experimental data is often collected from regu-
lar grids, whereas real deployments may have an irregular
topology. Leveraging the existing experimental data we pro-
pose to generate synthetic data of irregular topology from
modeling the experimental data. Our proposed synthetic
data generation techniques attempt to approximate the ex-
perimental data in terms of distribution, spatial correlation,
or other features of interest. Our synthetic data generation
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(a) Result on linear data

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 1.6e-05

 1.8e-05

 2e-05

 0  50  100  150  200  250  300  350  400  450

M
ea

n 
sq

ua
re

 e
rr

or
 in

 th
e 

re
-c

on
st

ru
ct

ed
 s

ce
ne

Number of samples

MSE in Raster Scan
MSE in Adaptive Sampling

(b) Result on quadratic
data
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(c) Result on data with
smooth curvature
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(d) Result on data with
rough curvature

Figure 2. comparison of Adaptive Sampling
vs. Raster Scan: for data generated from lin-
ear and quadratic models, AS performs sev-
eral magnitudes better than RS; however, for
experimental data collected from a lab envi-
ronment, AS is very close to or worse than
RS.

tool-box introduced in [2] includes eight spatial interpola-
tion algorithms, which in turn will generate eight different
data sets based on one single experimental data set. Which
synthetic data set is more desirable depends on the specific
application and algorithm in the study.

Since it is difficult to design an algorithm that is prov-
ably insensitive to data input and it is hard to predict the
statistics of the data that is going to be sampled, we recom-
mend evaluating algorithms with data across a range of pa-
rameters, and investigate how the algorithm’s performance
changes with different data characteristics. Our proposed
synthetic data generation approach can be used to gener-
ate realistic data sets with a wide range of parameters.
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