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I. INTRODUCTION

Sensor networks—networks of small, resource-constrained
wireless devices embedded in a dynamic physical
environment—have led to new algorithm, protocol, and
operating system designs [1], [2]. Interactions between sensor
hardware, protocols, and environmental characteristics are
impossible to predict, so sensor network application design is
an iterative process between debugging and deployment [3].

Current debugging techniques fall short for systems which
contain bugs characteristic of both distributed and embedded
systems. Such bugs can be difficult to track because they are
often multicausal, non-repeatible, timing-sensitive and have
ephemeral triggers such as race conditions, decisions based
on asynchronous changes in distributed state, or interactions
with the physical environment. Furthermore, it is a challenge to
extract debugging information from a running system without
introducing the probing effect (alteration of normal behavior
due to instrumentation) or draining excessive energy.

This paper presents a preliminary design and evaluation
of Sympathy, a debugging tool for pre-deployment sensor
networks and motivated by Ruan and Pai’s DeBox system [4].
Sympathy consists of mechanisms for collecting system per-
formance metrics with minimal memory overhead; mecha-
nisms for recognizing events based on these metrics; and a
system for collecting events and their spatio-temporal context.

Sympathy introduces the idea of correlating seemingly un-
related events, and providing context for these events, in order
to track down bugs and find their root causes. Using Sympathy
we have begun to distill out the important metrics, events
and generic correlators that help find bugs quickly, and to
transmit this data in ways that minimize energy consumption
and probing effects. This process is ongoing. Our current con-
tribution, then, is a tool that can be used for pre-deployment
debugging, and for analysis on the role of a debugging tool in
the entire design process. Eventually, Sympathy will be part of
a system that can aid in debugging sensor networks both pre-
and post-deployment. Below we present a useful case study
that demonstrates our current contributions by showing how
Sympathy was used to debug a failure in tiny diffusion.

In related work, [5] and [6] address the data collection
aspects of post-deployment debugging, but focus on the mech-
anism to gather statistics instead of their content. Our work
is complementary, since Sympathy is so far mostly concerned
with content: discovering the most useful metrics to collect.
Simulations and visualization tools are also helpful, but do
not capture historical context or aid in determining the cause

of a failure. While log files can provide context to a failure,
they often contain excessive data which can obfuscate impor-
tant events. Sympathy distinguishes itself from passive data
logging approaches by proactively collecting and highlighting
potentially relevant events and their context in order to aid in
isolating their causes.

II. ARCHITECTURE

Sympathyś general architecture is as follows: Sympathy
collects metrics from all nodes and watches the metrics for
indications of events, which are metric changes that often
indicate important changes in application state. On inferring
an event, Sympathy:

1) Stores all metrics it has collected from the past 200 time
units for the node causing the trigger, providing temporal
context.

2) Stores all metrics it has collected from the past 200 time
units for the nodes neighboring the node where the event
was detected, providing spatial context.

3) Prints event and context information to a log file, which
can aid in correlating events.

4) Calls applications interested in the event.

The version of Sympathy described here collects four metrics:
neighbor lists, link quality, nodes’ top two choices for next
hop, and associated next-hop path loss. It watches for two
types of events based on these metrics, namely missing or
isolated nodes and changes in route selection, neighbor lists,
or link quality.

III. EVALUATION

To demonstrate Sympathy’s potential as a debugging tool,
we ran it with a nesC implementation of tiny diffusion [7],
a routing algorithm based on directed diffusion [8]. In tiny
diffusion, nodes periodically flood neighbor beacons (to cal-
culate link quality), neighbor lists and associated link qualities
(to identify assymetric links), and gradients which carry a
node’s next hop and projected path loss (to determine a node’s
next hop). We debugged this system pre-deployment, using
simulations on a 14-node network that ran for two hours.
Our goal was to determine why tiny diffusion had been
experiencing loss rates an order of magnitude higher than
expected in data delivery to the sink.

After the first run, using the events triggered in Sympathy,
we saw nodes change their next-hop selection approximately
every 170 seconds. Sympathy aided over traditional debugging
techniques by highlighting the frequent changes in next-hop
selection and providing spatial correlation, which revealed that
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Fig. 1. Histogram of number of gradients received by a node that changed its
next hop, as a percentage of the number of neighbors in that node’s neighbor
list. Each node should receive roughly as many gradients as it has neighbors,
but the graph shows that most nodes received gradients from only 10% of
their neigbhors (a minority of nodes may send multiple gradients, resulting
in greater than 100%). The final bar represents nodes who heard at least one
gradient, but had 0 neighbors recorded

during each period, on average 39% of nodes changed their
next hop. While we would expect some churn in next-hop
selection, the continuous flux appeared suspicious.

We then investigated the temporal context provided for
each event by Sympathy: that is, the metrics and events
that occurred close in time to the unusual changes in next
hop. Surprisingly, we found that most nodes that changed
their next hop did so because they had received only one
gradient message and thus had only one choice for a next
hop. Clearly, this was the cause for the frequent changes in
next-hop selection. Furthermore, there was a high probability
that nodes frequently selected high-loss paths, as they were
given only one choice for next hop: had they received more
than one gradient message, nodes could have chosen a better
next hop with lower path loss. This in turn was a probable
cause for the high loss rates observed at the sink.

To quantify our findings, we graphed the ratio of gradients
received vs. number of neighbors. Figure 1 presents the results
in a histogram: the vast majority of next hop changes took
place when the node received gradients from 10% or less of
its neighbors. This is particularly strange because neighbor
lists are recalculated each period from neighbor beacons that
are flooded out immediately before the gradient messages. So,
on an ideal, minimally varying, 0-loss link, a node should
receive 100% of the gradient messages sent by the nodes on
its neighbor list. Yet an order of magnitude fewer gradient
messages than neighbor beacons were received.

We theorize that many nodes received such a small per-
centage of their intended gradient messages due to collisions
caused by synchronization of nodes’ gradient floods. Code
examination corroborated this theory, revealing that while jitter
was added to the transmission of neighbor beacons, no jitter
had been added to the transmission of gradient floods.

Sympathy’s strength lies in its support for highlighting
events and correlating them with metrics in their spatio-
temporal context. This is an improvement over traditional

debugging techniques in three ways: it facilitates discovery
of correlations by associating context with a specific event; it
provides event tracking, which involves maintaining state; and
it determines which events are important to track (only a finite
number of events can be tracked). In addition to highlighting
correlations, Sympathy avoids several iterations of debugging
and re-running that would otherwise be needed to capture and
analyze metrics in order to find events.

However, Sympathy cannot be used in a vacuum, nor can it
be used to find bugs automatically. We used our knowledge of
tiny diffusion to dismiss extraneous correlations, and to add the
second-best gradient to the final list of metrics collected. While
most of the metrics collected by Sympathy are not application-
specific, ongoing work will include a comprehensive analysis
of more generic metrics, events and correlators.

IV. CONCLUSION/FUTURE WORK

This work is one step on the road to a debugging tool that
will cover both pre- and post-deployment debugging. Future
work will focus on developing better methods for identifying
significant correlations and porting the tool to enable post-
deployment debugging.

Post-deployment debugging will rely more on inferences of
system state based on externally observable metrics, such as
messages, and will not be as precise as the pre-deployment
techniques discussed here. We plan to deploy strategically
placed Linux-based microservers that could shift power-heavy
debugging, logging and transmission operations off the low-
power sensor nodes, while preserving timing. Interestingly, a
third-party snooper observing a network running tiny-diffusion
could collect all of the metrics utilized by Sympathy today,
entirely avoiding extra broadcasts containing debugging infor-
mation.
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