
Object tracking in a multi sensor
network

Sebastiaan de Vlaam

The Hague, August 17, 2004

Delft University of Technology
Computer Engineering, Parallel and Distributed Systems

TNO Physics and Electronics Laboratory
Smart Sensor Solutions, Networked Embedded Systems

Abstract

Wireless Sensor Networks (WSN) are networks of small “sensor nodes”,
small computing devices with wireless communication abilities and sensors.
The last few years, there has been a lot of research on sensor networks and
their applications. This report presents such an application of sensor net-
works. The objective is to design and implement an object tracking system
using a wireless sensor network. This application is able to detect and track
objects, and report information about these objects to a central base station.

A passive infrared (PIR) sensor is chosen to detect objects, especially hu-
mans. This PIR sensor is connected to a Mica2 node, a commercially avail-
able sensor node. The PIR sensor is able to detect humans and provide an
estimation of the direction of movement. A PC with a node programmer
is used as a base station to display and gather information from the sensor
network.

The software for a node is divided into different modules, each to perform
a specific task. There are modules for the PIR sensor, detecting movement,
sending messages (multicast), and a top-level module for the tracking algo-
rithm. These modules are written in nesC for the TinyOS operating system,
that runs on the Mica2 nodes. All modules have clearly specified bidirec-
tional interfaces that describe the provided functions.

Experiments with the object tracking system show that the system can track
an object, calculate its speed, and report this information to a base station.
The speed calculation is relatively accurate, but can be influenced by the
orientation of the sensor.

The object tracking system using multiple sensors provides a good founda-
tion for a security application and shows the possibilities of sensor networks
in this field. The usability of the system can be improved by incorporating
localization and more configuration possibilities. This will be added to the
system, before it is used in a demonstration for the Ministry of Defense in
October 2004.

i

Preface

This report describes the project done for my thesis for the Master of Sci-
ence degree in Computer Engineering at Delft University of Technology.
This project was performed under the supervision of dr. ir. M.G. Maris
at TNO-FEL in The Hague and dr. K.G. Langendoen at TU Delft. The
graduation committee is composed of:

prof. dr. ir. H.J. Sips TU Delft - Parallel and Distributed Systems
dr. K.G. Langendoen TU Delft - Parallel and Distributed Systems
dr. ir. A.J. van Genderen TU Delft - Computer Engineering
dr. ir. M.G. Maris TNO Physics and Electronics Laboratory

Acknowledgments

I would like to thank TNO for giving me the opportunity to work within
their organization and providing me with a master project with a practical
application. In particular thanks to Marinus Maris and Maarten Ditzel for
their support and comments. Also I would like to thank Piet l’ Ami for
constructing the (tiny) connectors for the sensors. Of course I would like to
thank Koen Langendoen for his supervision on my work for this thesis.
Last but certainly not least I would like to thank my girlfriend Hanneke
Siegers for always wanting to listen to me.

Sebastiaan de Vlaam
August 17, 2004

ii

Contents

Abstract i

Preface ii

1 Introduction 1
1.1 Project context . 1
1.2 About TNO . 1
1.3 Sensor networks . 2
1.4 Report outline . 2

2 Objective and requirements 3
2.1 Objective . 3
2.2 Requirements . 3

3 Hardware and software choices 5
3.1 Nodes . 5

3.1.1 Hardware . 5
3.1.2 Software . 6

3.2 Programming environment . 6
3.3 Sensors . 7

3.3.1 Types of sensors . 7
3.3.2 Sensor choice . 8
3.3.3 Sensor connection . 8
3.3.4 Sensor operation and output 10

4 System 12
4.1 Components . 12
4.2 Placement . 12
4.3 Assumptions . 13

5 Software design 15
5.1 Node software . 15

5.1.1 Modules . 15
5.1.2 Infrared . 16

iii

5.1.3 Detect . 17
5.1.4 Multicast . 19
5.1.5 Tracking . 19

5.2 Base station software . 22
5.2.1 Base node . 22
5.2.2 PC . 22

6 Software implementation 23
6.1 Node program modules . 23

6.1.1 Infrared . 23
6.1.2 Detect . 23
6.1.3 Multicast . 24
6.1.4 Tracking . 25

7 Experiments 26
7.1 Gathering sensor data . 26

7.1.1 Single sensor . 26
7.1.2 Multiple sensors . 26

7.2 Tracking . 28

8 Conclusions and Recommendations 31
8.1 Conclusions . 31
8.2 Recommendations . 33
8.3 Final remarks . 34

Bibliography 35

iv

Chapter 1

Introduction

This chapter gives a short introduction to the project done for my Master
in Computer Engineering. It provides the context in which this project has
been done, an introduction to the organization in which the project has been
performed and a general introduction to sensor networks.

1.1 Project context

Object tracking is being investigated as part of a research program at TNO-
FEL to demonstrate the usability and possibilities of sensor networks to the
Ministry of Defense. This project is inspired by the “Compound Security
Demonstrator” project [9] and provides some important extensions as well
as improvements.

Protection of personnel has a high priority in peacekeeping missions. When
a military unit establishes a base (compound) they want to set up a security
system as quickly as possible. At the moment the royal army has different
sensor systems, including footstep detectors, a battlefield radar and trip
wires. These systems have several disadvantages including single points of
failure and (semi) constant personnel attention. So there is a need for a
system that is easy to deploy and does not require an existing infrastructure
or constant checkup by humans.

1.2 About TNO

TNO (Netherlands Organization of Applied Scientific Research) is a knowl-
edge organization for companies, government and social organizations. Its
main objectives are research and the practical applications of this research.
TNO has around 5400 employees. Services provided by TNO include re-
search on demand, advise, testing and certifying products, and independent
quality control.

1

TNO Physics and Electronics Laboratory (TNO-FEL) provides leading edge
services and products in the field of military (defense), public safety, ICT,
transport and logistics, aerospace- and electronic systems. At TNO-FEL
employs 550 people. The project described in this report has been executed
within the division Smart Sensor Solutions in the Networked Embedded
Systems (NES) group.

1.3 Sensor networks

Wireless Sensor Networks (WSN) are networks of small “sensor nodes” con-
sisting of a microcontroller, a radio front-end, a power supply and one or
more sensors enabling deeply embedded systems capable of sensing the phys-
ical environment. The development of these sensor networks is fueled by the
advances in computer chip miniaturization and circuit design allowing for
small devices with efficient wireless communication equipment. The last few
years there has been a lot of research on sensor networks. A few of the chal-
lenges faced in the design of sensor networks include localization and ad-hoc
networking. The goal is to deploy a network of hundreds or thousands of
nodes that organize themselves into a network and start sensing the environ-
ment. Examples of applications of sensor networks include environmental
control, surveillance and tagging mobile items [4].

1.4 Report outline

This report has the following structure. Chapter 2 describes the objective
and requirements for this project. Chapter 3 describes and motivates the
choices for the hardware and software used in object tracking. Chapter 4
provides an overview of how the system should look and identifies the main
components. In Chapter 5 a design is made for the application running on
the nodes and a design is presented for software running on a PC that serves
as the base station. Chapter 6 covers the details of the implementation of
the software. Chapter 7 describes the experiments and their results. The
experiments were performed both with the entire system as well as some test
systems. Finally, Chapter 8 concludes with final remarks and suggestions
for future research.

2

Chapter 2

Objective and requirements

This chapter describes the objective and the requirements for this project.
The requirements do not include specific requirements for the use in a mil-
itary environment, for example, robust packaging, as they can always be
added afterwards.

2.1 Objective

The objective of this project is to design and implement an object tracking
system using a wireless sensor network. The system should report the loca-
tion of the object and possibly other information about a detected object,
such as speed and direction. Information about the detected object should
be acquired and shared among the sensor nodes using the wireless commu-
nication possibilities of the nodes. This shared information will be used to
generate precise information about the object and to improve the reliability
of the object detection and classification.

2.2 Requirements

• Detect physical intrusion within a specified area.
The system should primarily detect humans. The area is bounded by
the sensing range of the sensors.

• Determine the location, velocity and possibly the size of a detected
object.
Using the sensor information, as much information as possible should
be reported about the detected object.

• Sensor nodes share their sensor information to improve the reliability
of the individual sensor readings.

• Report to a single base node (in sensor networks also known as the
”sink”) and receive messages from this base node.

3

All nodes should be able to send a message to the base node and receive
messages from the base node regardless of the network topology.

• Detect and handle disabled/removed nodes.
The system should be able to detect the loss of one or more nodes and
keep functioning as reliable as possible.

• Extend the network with additional sensor nodes.
New sensor nodes should be able to join the sensor network without
additional configuration.

• Low power operation.
The entire system of sensor nodes should use the least possible energy
using the sleep and/or power-down capabilities of the sensor nodes.

• The system should respond within half of the time needed for a person
to go from one sensor to the next. Thus within 1

2
×

d
v

seconds, where
d is the distance between two sensors and v the speed of person. The
average walking speed of a person is around 1, 4 m/s (or 5 km/h).

4

Chapter 3

Hardware and software

choices

In this chapter the hardware and software used for the project is described.
If necessary, choices for a certain part of hardware and/or software are mo-
tivated.

3.1 Nodes

The next sections cover the hardware and software for the wireless sensor
nodes.

3.1.1 Hardware

As hardware for the wireless sensor network, the Mica2 [5] platform is used.
The Mica2 is a module for low-power, wireless sensor networks. It was
designed at the Berkeley University of California [1] and is manufactured
and distributed by Crossbow [2]. A Mica2 node is shown in Figure 3.1.

Figure 3.1: Mica2 wireless sensor node.

The Mica2 is based on an ATmega128L 16MHz low-power microcontroller,
it contains 128K bytes of program flash memory, 512K bytes of measure-
ment (serial) flash and 4K bytes of EEPROM.

5

The Mica2 platform was chosen because of the availability at TNO-FEL. The
TU Delft also does some research on the Mica2 nodes. The knowledge of the
Mica2 platform within TNO-FEL makes it possible to incorporate obtained
knowledge into other projects more easily. The TinyOS-Berkeley/Crossbow
nodes are worldwide one of the most used platforms for wireless sensor net-
works, which is interesting from a commercial point of view.

The Mica2 nodes are programmed using a MIB510 serial programmer pro-
vided by Crossbow. Besides programming the nodes, this programmer (to-
gether with a node) can be used to communicate between a PC and a sensor
network.

3.1.2 Software

TinyOS [7] runs on the Mica2 platform. TinyOS is an event-driven open-
source operating system for wireless (embedded) sensor networks. The
TinyOS-Berkeley/Crossbow combination is used by over 500 research groups.
Many individuals and research groups contribute to the code and standards
of TinyOS via its sourceforge website [6].

TinyOS is written in nesC, a programming language with a C-like syntax
for programming network embedded systems. NesC applications consist of
one or more components linked together to form an executable. A compo-
nent provides and uses interfaces. Interfaces declare a set of functions called
commands that the provider of the interface must implement and another
set of functions called events that the user of the interface must implement.
NesC has two types of components: modules and configurations. Modules
implement one or more interfaces. Configurations are used to assemble other
components together, connecting interfaces to their implementation. This
is called ’wiring’ [8].

The entire TinyOS operating system, including all libraries, is written in
nesC. All the software, running on the Mica2, for this project is also written
in nesC.

3.2 Programming environment

The TinyOS tools are available for Linux/Unix and Windows (under Cyg-
win) and contain various tools:

• NesC compiler,

• AVR compiler and utilities,

6

• Java SDK and Java COMM,

• A sensor network simulator.

TinyOS provides tools to convert TinyOS messages to Java classes, so the
messages can be used in Java programs. This way Java can be used to create
programs to communicate with the nodes, using a serial connection via the
programmer and a dedicated node on the programmer.

The TinyOS tools also come with a Java program called the ”Serial For-
warder”, which can provide communication with the sensor network (using
a programmer and node) via a TCP/IP network. This tool can be used to
link any program to the sensor network.

3.3 Sensors

In this section the sensor chosen for this project is described.

3.3.1 Types of sensors

For a system to be used for intrusion detection, a sensor should be used that
is capable of detecting (moving) objects. Other requirements for a sensor
are:

• low-power operation,

• processing sensor data should not require too much processing power,

• processing sensor data should not require too much processing time,

• reasonable size and cost,

• reliable, meaning it should not give false positive or negative readings.

Considering the requirements different types of sensors can be used. For
object tracking the following sensors can be considered: accelerometer (seis-
mic), ultrasound (ultrasonic) and infrared (thermal) [3].

Sensor Low-power Processing Reliability Size & cost

Accelerometer yes low low low

Ultrasound no high high high

Infrared yes low medium low

Table 3.1: Properties of different types of sensors.

7

3.3.2 Sensor choice

Considering the information in Table 3.1, the ultrasound sensor is excluded
as a sensor with low-power properties is required. Comparing the accelerom-
eter and the infrared sensor, the infrared sensor has better detection prop-
erties for movement. Thus the sensor used in this project will be a thermal
sensor, more precisely a passive infrared sensor (PIR).
The choice for the infrared sensor is also based on the fact that a PIR
is already used in the Compound Security Demonstrator (CSD) [9] which
provided good results for direct motion detection. Another advantage is
that the analog output signal of a PIR sensor can give an indication of the
direction of movement (see Figure 3.3 and Section 5.1.3).

Operation of PIR sensors

Objects that generate heat also generate infrared radiation. The wavelength
of infrared radiation is longer than the wavelength of visible light. It can not
be seen, but it can be detected by a pyroelectric sensor. This sensor is made
of a crystalline material that generates an electric charge when exposed to
infrared radiation (i.e. heat). The amount of charge is proportional to the
amount of radiation. Pyroelectric elements are sensitive to radiation over
a wide range, therefore a filter window is placed before the sensor to limit
incoming radiation to the 8 to 14 µm range, which includes the infrared
radiation from human bodies.

Usually a PIR sensor package contains two elements next to each other
and the output of the PIR sensor is based on the difference between the
two elements. This cancels out signals caused by vibration, temperature
changes and sunlight. A person passing the sensor will first activate one
element and then the other, which gives a positive or negative difference
between the elements depending on which element is activated first. See
Figure 3.2 and Figure 3.3.

The PIR sensor used for this project is an all-in-one package, containing a
PIR sensor, some circuitry (including an amplifier) and a Fresnel lens. This
sensor is available from Conrad, type number 172500. See Figure 3.4.
The advantage of the selected PIR sensor is the possibility to use the analog
output. Another advantage is that this sensor can easily be mounted on a
wireless sensor node without increasing the total size dramatically.

3.3.3 Sensor connection

The PIR sensor has to be connected to the Mica2 node. The Mica2 has a
51-pins connector for attaching sensor boards. The pin assignment of this
connector is described in the documentation available from Crossbow [2].

8

Figure 3.2: Illustration of movement detection with a PIR sensor.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35

se
ns

or
 v

al
ue

 (V
)

time (s)

Analog sensor output

Analog signal

Figure 3.3: Analog output signal representing movement in both directions.

Figure 3.4: PIR sensor.

9

The PIR can interface directly with the extension connector without addi-
tional circuitry. The pin conversion is shown in Table 3.2.

PIR sensor Mica2 Connector

1 (ANA) 42 (ADC1)

2 (GND) 1 or 51 (GND)

4 (OUT) 43 (ADC2)

5 (GND) 1 or 51 (GND)

6 (VCC) 2 or 50 (VCC)

Table 3.2: Pin conversion from PIR sensor to Mica2 connector.

Using this pin assignment a connector is made to connect a PIR sensor to
the Mica2 node. This connector is shown in Figure 3.5 (including a PIR
sensor).

Figure 3.5: Mica2 connector for the PIR sensor, including the PIR sensor.

3.3.4 Sensor operation and output

A PIR sensor has an input voltage (Vcc) ranging from 3 to 12 V using 1,4
mA. The 3 V can easily be drawn from the same batteries that operate the
node (2xAA), which excludes the need for an external power source for the
sensor. This also prevents another increase in size. The sensor has three
outputs, an analog (data) output, a reference voltage and a digital output.
The digital output indicates if movement is being detected, the reference
voltage is approximately half the supply voltage Vcc

2
, and the analog output

gives a (theoretical) value between 0 and Vcc. The reference voltage is not
connected and therefore cannot be used.

The sensor is connected to the Mica2 as explained above. The sensor is
powered directly via the 51-pins connector and thus powered whenever the
node power is enabled. The sensor requires a startup period of at least 45
seconds, regardless of the sensor has been turned on before. This behavior

10

is the result of the charging of capacitors and the circuit. Because the
amplifiers in the sensor act as a diode when the power is turned off, the
entire circuit has to be recharged when the power on the sensor has been
turned off.

11

Chapter 4

System

In this chapter the total system setup is presented, including how the system
looks and operates.

4.1 Components

The entire intrusion detection system consists of the following components:

• A number of sensor nodes with a passive infrared sensor, as shown
in Figure 4.1. These nodes will be running the software described in
3.1.2. Of course for outdoor use the node and sensor have to be placed
in a robust packaging. Also, there has to be a way to easily place the
nodes, for example attaching them to a building or placing them on
special posts or fences.

• A base node, which communicates with a PC through the program-
mer and a serial cable. See Figure 4.2 for a picture of the MIB510
programmer.

• A PC with the programmer connected to it, functioning as base station
for the system. The PC serves as an actuator in this system reporting
information obtained from the sensor network to the user. The PC can
be replaced by another actuator, for example a camera or an alarm.

4.2 Placement

To detect movement, there is a number of considerations for the placement
of the entire network and the individual nodes. PIR sensors need a direct
line of sight for detection and are not omnidirectional, so the orientation of
the sensor has to be considered. Depending on the network topology, the
sensors all have to have the same orientation. For all nodes to be able to
reach the base station, it has to be placed centrally. See Figure 4.3 and 4.4
for a schematic view of the system.

12

Figure 4.1: Mica2 node
with a PIR sensor con-
nected to it.

Figure 4.2: MIB510 serial
programmer.

A B C D E

Base

Figure 4.3: Line topology,
the arrows indicate the sensor
heading.

A

B

CD

E

Base

Figure 4.4: Circle topology,
the arrows indicate the sensor
heading.

4.3 Assumptions

To be able to track a moving object some assumptions are made about the
movement of the object and the properties of the detection and tracking.
Some assumptions are consequences of the chosen solution and some are
consequences of the (at the moment) limited capabilities of sensor networks.

• If an object is detected by a node and after a certain time period an
object is detected by another node, it is presumed to be the same
object. This assumption is made because objects do not carry any
form of identification, nor can different objects be distinguished. This
assumption is a consequence of the chosen solution. A PIR sensor
cannot distinguish between different objects. Multiple heterogeneous
sensors on the same node (sensor fusion) can be used to distinguish
between different objects.

13

• Each node ”knows” who its neighboring nodes are and knows their
relative position to its own position (either left or right). Neighbors in
this case are the nodes directly adjacent to a node and not, as usually
in sensor networks, all nodes within radio range. The sensing range of
the PIR sensor is set to about 4 m, which is considerably less than the
radio range. So, in the interpretation using radio range, a node has a
lot of neighbors. The information about neighboring nodes is initially
stored in the software. Ideally a node determines its own (relative)
position using localization.

• The nodes form a network that can detect movement in one dimension,
see Figure 4.3 and 4.4 for possible topologies. This assumption is
also a consequence of the chosen solution. By limiting the detection
field to one dimension, all nodes can obtain the information about
the object (direction, speed) with only relative information from the
neighboring nodes (left or right, distance). Extending the detection
field to two dimension, for example by placing the nodes in a grid,
requires more position information. The position can then be specified
by a coordinate system, which requires some (common) origin.

• The nodes are distributed in such a way that the distance between the
nodes is always the same between neighboring nodes. The distance
is used for speed calculation. Using localization methods, a node can
determine its own distance to its neighbors.

14

Chapter 5

Software design

This chapter presents the software design for both the software running on
the nodes and the software running on a PC. First the structure of the
system is described and after that the individual modules are explained.

5.1 Node software

This section describes the design of the software that is running on the
nodes.

5.1.1 Modules

The software for a node is separated into a number of modules, each with
its own functionality. The relation between the modules is shown in Figure
5.1. Modules shown with a dashed line (Leds, GenericComm, ADC) are
provided by TinyOS. The node software consists of the following modules.

• Infrared
This module provides an interface to the ADC (Analog Digital Con-
verter). It can read the analog and digital values from the PIR sensor.
It is used by the Detect module.

• Detect
The Detect module signals an event to the Tracking module upon
movement detection, including a direction indication. It is also re-
sponsible for resetting the sensor state. All sensing parameters are
specified in this module.

• Multicast
This module provides the functionality to send one message to any
number of nodes. It is used by the Tracking module to communicate
with other nodes.

15

• Tracking
This is the main module containing the functionality for communi-
cation between nodes and reporting events to the base station. The
configuration of this component wires all the components mentioned
in this design, including the necessary libraries for communication. It
uses the Detect module to get a signal upon detection of movement
and the Multicast module for sending messages to neighboring nodes.

Tracking

Multicast

GenericComm

Detect

Leds

InfraredADC

Figure 5.1: Tracking application modules and their relations.

5.1.2 Infrared

The Infrared module provides an interface to the ADC. Table 3.2 shows to
which ADC channels the PIR sensor is connected. The analog output of the
PIR sensor is actually the only output that is used for this application, but
the digital channel is provided for future use and/or applications.

TinyOS provides an interface to the ADC, which will be used in the Infrared
module. A separate interface is created for accessing the infrared sensor to
shield the user from being confronted with irrelevant details of accessing and
initializing the ADC. When wiring (see Section 3.1.2) the ADC interface,
a direct reference to the used ADC channels has to be specified. Also an
interface for control and initialization of the ADC is wired.

The Infrared module provides commands to read from the different infrared
outputs (i.e. analog and digital) and provides an event that is signaled
when a value is read from the ADC. The sampling rate is not specified in
this module, but in the Detect module. The Infrared module just reads a
sample from the ADC and signals an event containing the sample data.

16

5.1.3 Detect

The Detect module uses the infrared interface to detect movement and the
direction of the movement. It provides a command to start the detection
and provides an event, which is signaled upon motion detection, that indi-
cates the detected direction. As mentioned previously, the Detect module
also specifies the sampling frequency for the sensor.

The direction of movement can be determined from the analog sensor data.
Approaching the sensor from one direction gives a positive peak in the signal
and approaching from the other direction gives a negative peak (See Figure
3.3 and Section 3.3.2). To prevent that noise is mistaken for movement, a
threshold T is set. The sensor data must exceed this threshold to signal
an event, which indicates that movement is detected. This threshold is rel-
ative to the data average and is symmetrical. This means that the same
threshold is used for both directions, using average + T for one direction
and average− T for the other, see Figure 5.2

T

B

−B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

se
ns

or
 v

al
ue

 (V
)

time (s)

Analog output and detection parameters

Analog signal
Filtered signal

Figure 5.2: Typical sensor measurement and parameters for movement de-
tection.

When a person is passing the sensor, the threshold is being exceeded fre-
quently, but the sensor is still detecting the movement of one person. Thus,
to detect the end of one movement, the sensor value has to be between a
relative boundary B for a number of consecutive samples (see Figure 5.2).

The raw output signal of the sensor is not smooth (Figure 5.2, solid line),
because is is dependent of the fluctuating supply voltage. These fluctuations

17

are caused by other operations on the Mica2 requiring (non-constant) power,
for example radio communications. Therefore, the data is filtered using a
moving average filter with a window size of 10 samples (see the green line
in Figure 5.2) to smooth the data.

It is empirically determined that 8 samples per second from the PIR sensor
provides enough data to detect motion with direction. Lower sampling rates
increase the possibility to miss objects or misinterpret the direction infor-
mation. Higher sampling rates consume unnecessary (processing) power,
and experience more influence from other operations on the Mica2. The
detection algorithm is given below in Algorithm 1.

input: threshold T ,
boundary B,
sample frequency f ,
samples between boundary n

begin
i← 0
detecting ← FALSE
while timePassed(1

f
) do

call readAnalog()
wait readDone(sample)
filter(sample)
if sample < T or sample > T then

signal detected(sample < T)
detecting ← TRUE

end
else

if sample > −B and sample < B then
i← i + 1

end
else

i← 0
end
if i >= n then

detecting ← FALSE
end

end
end

end
Algorithm 1: Detection algorithm.

18

5.1.4 Multicast

The Multicast module provides a way to send a message to multiple, but not
all, nodes. It is called multicast, but actually it implements the repeated
transmission of the same message to multiple nodes. This mechanism is
wrapped in a single interface to shield the details of sending a message
multiple times from the user. The algorithm for this module is shown in
Algorithm 2.

input : Array of node addresses N
Number of nodes in the array n
Message msg

ouput: Event signaling message send successful or unsuccessful

begin
for i← 0 to n− 1 do

send(msg) to N [i]
wait success← sendDone()

if !success then break
end
signal multicastDone(success)

end
Algorithm 2: Multicast algorithm.

The main advantage of the Multicast module is to improve readability of a
program as only one call is needed instead of a mechanism to handle multiple
sending of the same message. With point-to-point messages, it is also easier
to add mechanisms such as acknowledgment and CRC (Cyclic Redundancy
Check).

5.1.5 Tracking

The Tracking module is the top-module for target tracking. Ultimately, it
provides an estimation of the position and the speed of a moving object (per-
son). To realize this, the nodes have to cooperate and communicate. Com-
munication is done using both the communication capabilities of TinyOS
directly (for communication to the base station) and the multicast interface
for communicating with a node’s neighbors.

The Tracking module performs two (closely related) functions: coordination
(using communication) between nodes and communication to the base sta-
tion. These functions are closely related because the same information, i.e.
the same message, is sent to neighboring nodes and the base station, respec-
tively. This message will also contain the information needed to determine
which node sends information to the base station.

19

Object tracking

Upon detection of an object the Detect module signals an event which is
implemented by the Tracking module (see Section 3.1.2). This event con-
tains directional information obtained from the local sensor. The directional
information is processed differently depending on the state of the tracking:
tracking an already detected object or starting to track a new object.

If a node starts tracking an object it assigns a “target id” to that object.
Also the directional information from the Detect module is assumed to be
the actual direction of the object. However, a flag is set indicating that the
acquired directional information has not yet been confirmed by other nodes.

If a node detects an object and it is in the state of still tracking a (previ-
ously) detected object, the direction of movement is determined from the
relative position of the neighboring node that detected the object earlier,
rather than using the local sensor information.

After the direction of an object is determined, a message is sent to both
neighbors of a node, containing the following information:

• the node address of the sending (source) node,

• the determined direction,

• a flag indicating whether the direction has been confirmed by other
nodes,

• the determined speed (if possible),

• a target id of the object that is being tracked.

This message is sent to both the left and the right neighbor to prevent the
situation that if the local sensor information is wrong, the second node,
which detects the same object, sees it as a new target. See figure 5.3, the
red arrow indicates the direction detected by node B, which is incorrect. If
node B assumes the detected direction is correct, it would only need to send
a message to node A. Node C will then detect the object as being a new
target (which it is not). Therefore the message is send in to both neighbors.
The messages to to the neighbors are sent in a wraparound fashion to sup-
port ring topologies (see Figure 5.4).

Upon receiving a message from a neighboring node, a timer is started with
two purposes: to specify a timeout period in which a node waits to detect
the target it has received information about, and to determine the time t it

20

A B C

object movement

Figure 5.3: Detection of the wrong direction.

took the object to travel the distance D between nodes. Using this timer a
node can calculate the speed of the object using the simple formula:

v =
D

t
(5.1)

where v is the calculated speed in m/s.

A B C D E

(tracking message)

Figure 5.4: Direction of message sending.

Base station reporting

To use the sensor network for target tracking, the obtained information
about a tracked object needs to be communicated to a base station (PC or
other actuator, see Section 4.1). The Tracking module implements a simple
scheme to determine when to send information to the base station. In the
software, a number n can be specified, which indicates which node should
send a message to the base station. This means that every nth node that
detects the target sends the tracking information to the base station (for
example, with n = 2, the second, fourth, sixth, etc.).

Nodes have to communicate to determine which one is the nth node. To do
this a number called node count is included in the message sent to neigh-
boring nodes upon detection of movement. If modulo(node count, n) = 0
then the same message that is sent to both neighbors is also sent to the
base station, which then knows the position of the object. For n > 1 the
message contains speed information so the position of the detected object
can be extrapolated in time.

The choice for the value of n can depend on a few factors:

• the distance between the nodes,

21

• the (expected) speed of the object(s),

• the required amount of feedback from the network.

5.2 Base station software

As mentioned in Section 4.1, the base station consists of a base node to
communicate (wirelessly) with the sensor network and a PC. The base node
runs a simple message forwarding program and the PC runs software to
interpret and process messages from the network.

5.2.1 Base node

The base node’s only task is to forward messages from the sensor network
to the PC. This is done by connecting the base node to the PC using a
programmer. The TinyOS package comes with a program called TOSBase
(TinyOS Base) to intercept all packets from the network. Because only
messages sent to the base station (address) needs to be received, a slightly
altered version of TOSBase has been used. This version still intercepts all
packets, but eventually drops the ones not meant for the base station. An
advantage of using TOSBase is that TOSBase is bidirectional. It can also
send messages received from the PC to the sensor network.

5.2.2 PC

At the moment the PC program consists of a simple Java application that
shows the received messages in human readable form. Using the structure
that defines a message, a Java class is generated. This Java class, together
with the TinyOS java tools, provides an easy way to display the information
contained in a message. See Figure 5.5 for a example of a displayed message.

<TrackingMsg>

[sender=0]

[source=2]

[direction=0]

[speed=1.090909]

[indication=0]

[node_count=3]

[target=407]

Figure 5.5: Message displayed by the PC program.

22

Chapter 6

Software implementation

In this chapter some consequences of the design presented in Chapter 5 are
discussed.

6.1 Node program modules

The next sections give the specification of the interfaces of the modules
introduced in Section 5.1.1 and give implementation details of the different
modules.

6.1.1 Infrared

As seen in Table 3.2, ADC channel 1 is used for the analog output of a
PIR sensor and ADC channel 2 is used for the digital output. All events
from the ADC channels are mapped onto one event in the infrared module.
The commands readAnalog and readDigital are specializations of the ADC
command getData. They operate on the specified ADC channels.

The definition of the Infrared interface is as follows:

interface Infrared {

command result_t readAnalog();

command result_t readDigital();

async event result_t readDone(uint16_t sample);

}

6.1.2 Detect

The implementation of the detection module follows Algorithm 1. The state
detecting specifies if an object has been detected, this prevents false signals.
The while loop specified in Algorithm 1 is implemented by a timer, where the
body of the while loop is executed within an event that is signaled each time
the timer fires. Experimenting with the different parameters shows that the

23

values in Table 6.1 provide a good detection and a reasonable response time
between detections (i.e. the time after which a new object can be detected).

Parameter Variable Value

Average AV ERAGE 512

Detection threshold T 30

Rest state boundary B 10

Sample frequency f 1024

64

Samples between boundary n 5

Table 6.1: Detection parameters.

The definition of the Detect interface is as follows:

interface Detect {

command result_t startDetection();

async event result_t detected(bool direction);

event result_t reset();

}

6.1.3 Multicast

The Multicast module uses the TinyOS interface SendMsg for sending mes-
sages to other nodes. The SendMsg interface provides a parameterized in-
terface (interface that can provide multiple instances), with the parameter
being a handler id for the message type. To generalize the multicast module
it should also be defined as a parameterized interface with the parameter
being the message type. As yet there is no way to pass parameters to an-
other component within a configuration. In this case a parameter needs to
be passed from the provided interface (i.e. multicast) to a used component
(i.e. SendMsg). This problem is solved by including a header file in which
the message type can be specified.

Consistent with the SendMsg interface, the multicast module implements a
command send with an array of node addresses (instead of a single address
in SendMsg), the number of nodes in the array, the size of the message and
a pointer to the message which has to be sent as parameters. The module
sends the message to the first node in the array and waits for the sendDone
event, it then sends the (same) message to the next node in the array and
so on. Upon successful sending the message to all nodes it signals its own
sendDone event.

The definition of the Multicast interface is as follows:

interface Multicast {

command result_t send(uint16_t *addresses, uint8_t num_nodes,

uint8_t size, TOS_MsgPtr msg);

24

event result_t sendDone(TOS_MsgPtr msg, result_t success);

}

6.1.4 Tracking

The tracking module starts with initializing all variables needed for tracking
and then starts a one-shot timer with a 60 second interval to allow the PIR
sensor to warm-up. After this interval the detection module is operational.

The tracking module has to implement a way to keep track of the state of
the tracking as mentioned in Section 5.1.5. A simple variable is used that
stores the address of the node from which the last message was received.
For starting to track a new object, this variable gets a value that cannot
represent a node address (for example −1). This variable will also be used
to determine the direction of movement when tracking a target.

25

Chapter 7

Experiments

This chapter describes the experiments and their results conducted with the
Mica2 nodes and the infrared sensor. These include experiments done with
the entire system as well as experiments done for preparation or (compo-
nents) testing.

7.1 Gathering sensor data

As part of the analysis of the data obtained from the PIR sensor, data has to
be gathered and stored. Both the data from a single sensor as well as data
from multiple sensors have to be obtained. The experiments and results are
described in the following sections.

7.1.1 Single sensor

As part of the development of an application that can detect objects (per-
sons) with a PIR sensor, the data from the PIR sensor has to be stored and
analyzed. This test shows how the data of the PIR sensor look. To gather
data from the PIR sensor, a simple nesC program is used to send the sensor
data directly to the PC using a programmer and a serial cable. The sensor
data is stored on the PC. Later, the data can be plotted using, for example,
GNUPlot. Figure 7.1 shows a picture of the programmer and the PIR sensor
attached to a post. Plots of sensor data have already been shown in this
report, see Figure 3.2 and Figure 5.2.

7.1.2 Multiple sensors

As already indicated the entire system uses multiple sensors. A test setup is
used to show the relation between multiple sensors. This setup consists of
four sensor nodes that form a straight line. As in the single sensor setup the
data from the nodes is stored on a PC. To make the relations between the
sensors visible all the nodes have to start sensing at the same time. This is

26

Figure 7.1: PIR sensor and programmer connected to a post.

done by sending a start message to all the nodes at the same time.

It is not possible to send all samples from four nodes to a single base node.
Firstly, the base station cannot process all the messages at the same time
and secondly, the individual nodes cannot send 16 individual samples after
each other. One solution to this problem is storing the samples in the local
measurement flash memory of the node and read back the samples of each
node individually. The other solution is to store multiple samples in one
message to reduce the number of messages to the base station. The first
solution requires the use of the measurement flash memory, which draws a
lot of power for writing. This power drain affects the PIR sensor beyond
acceptable boundaries (the resulting noise is usually larger than the actual
motion detection). The second solution still requires the base node to re-
ceive too many messages, especially when the network is extended to more
nodes. Furthermore, multiple values in one message require more processing
time.

To be able to store the values from multiple sensors, a combination of the
afore mentioned solutions has been designed. Each node has an associated
node, called a “buddy”, which receives the message (containing multiple sen-
sor values) from one node and stores them in its measurement flash memory.
The advantage of this combination is that each buddy only needs to receive
the messages from one node and it can store the values safely in its mea-
surement flash memory because it does not use a sensor. A disadvantage
is that for every sensor you need two nodes, one to connect the sensor to
and one buddy. The sensor values are read from all the buddies sequentially.

27

Figure 7.2 shows the sensor data from four sensors. It can clearly be seen
that the object is detected by the sensors with a (more or less) equal interval.
Only the time between the detection by node 3 and node 4 is different. This
can be the result of a slightly different sensor orientation for sensor 4.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

se
ns

or
 v

al
ue

 (V
)

time (s)

Multiple sensors

Node 1
Node 2
Node 3
Node 4

Figure 7.2: Sensor values for multiple sensors detecting the same object.

7.2 Tracking

The experiment with the entire system tests the tracking properties of the
system. The setup consists of four nodes in a line topology placed in a hall-
way. To gather the data, a base node is used which receives all the messages
in the network. These messages are stored as a line of byte values in a file to
prevent losing messages by processing. These byte values are later converted
back to tracking messages. The most interesting values in the tracking mes-
sages are the direction and, if the direction is confirmed, the speed and the
target id.

The experiment consists of 22 times passing the four sensors with a regular
walking speed. After collecting all the messages, the messages with the same
target (id) are grouped. For each target it is determined if the direction in-
dication at the first node was correct, and the average speed of the target
is calculated. The average speed is the average of the speeds determined
by three of the four nodes, the first node cannot determine the speed of an
object. The results are shown in Table 7.1.

28

First direc-
tion correct

Average
speed (m/s)

Average
speed (km/h)

yes 1,77 6,36

no 1,40 5,04

yes 1,62 5,83

no 1,43 5,15

yes 1,74 6,27

no 1,63 5,88

no 1,31 4,72

yes 2,42 8,72

no 1,67 6,01

yes 6,29 22,63

yes 1,63 5,86

no 1,39 5,01

yes 1,67 6,01

no 1,40 5,03

no 1,07 3,84

yes 1,20 4,30

no 1,11 4,01

no 1,39 4,99

yes 1,60 5,74

no 1,40 5,03

yes 1,61 5,81

no 1,35 4,87

Average (22) 1,73 6,23

Average (20) 1,47 5,29

Table 7.1: Tracking results.

29

From the results in Table 7.1, it can be seen that the first direction indication
was correct in only 50% of the cases. This is less than expected. From all
the messages (not shown in this report) it can be seen that if the indication
of the first sensor is incorrect, it is mostly mistaking movement to the left
with movement to the right.

The direction of movement of an object can always be determined with a
100% accuracy using multiple sensors. Using the relative position informa-
tion from a node’s neighbors and using the information received about a
target, the direction of movement can be confirmed starting from the sec-
ond sensor, see Figure 5.3. Also in Figure 7.2 can be seen that the sensors
are activated one after another. Combined with the assumption (see Section
4.3 that each node knows the relative position (left or right) of its neighbors,
the direction can be determined by the order in which an object is detected.
From Figure 7.2 it can be seen that node 1 detected the object before node
2. Presuming node 1 is on the right of node 2, than the object moves from
right to left.

This experiment also show that the speed calculated at the third node is
slightly higher than that of the other nodes, which means that the move-
ment is detected relatively earlier at the third node. This can be caused
by the sensor orientation. The last two rows of Table 7.1 show the overall
average speeds. The final row shows the overall average speed if the two
measurements with wrongly calculated speeds (the rows shown in red) are
left out.

While tracking a target, the speed is calculated relatively accurately. How-
ever, the speed calculation is badly influenced by sensors with a slightly
different orientation. The high percentage of wrongly indicated directions
at the first node can have different causes, for example the environment in
which the tests are executed or the properties of the sensor.

30

Chapter 8

Conclusions and

Recommendations

8.1 Conclusions

The objective of this project is to design and implement an object tracking
system using a wireless sensor network. As described in this report and
shown in Section 7.2 a system was developed that can track objects (per-
sons) and calculate the speed of the tracked object.

The two main activities done in this project are: connecting a sensor to a
Mica2 node and gathering data from the sensor, and designing and imple-
menting the coordination and communication for object tracking.

The PIR sensor used in the system proves to be able to provide a good detec-
tion of movement of humans, as was expected. One of the main advantages
of this sensor is its analog output. A disadvantage of this sensor is the long
warm-up time. Using the built-in ADC of the ATmega128L gives the pos-
sibility to connect the output of the PIR sensor directly to the Mica2 node.
The improvements over the “Compound Security Demonstrator” relating to
the (sensor) hardware are:

• (much) smaller sensor,

• sensor can draw power from the node’s batteries and does not require
a separate power source,

• the response time (time between detection of objects) is smaller,

• the analog output of the sensor can be used to obtain directional in-
formation.

With the algorithm implemented in the system, the sensor network is ca-
pable of tracking a single target without using a base station. The role of

31

the base station is initially reduced to just receiving information from the
sensor network.

With respect to the requirements for an object tracking system, the following
can be concluded.

• The system is able to detect humans within the sensing range.

• The system can determine the direction and velocity of the detected
object. The sensor network can not directly determine the exact lo-
cation, because the position information is relative, so no absolute
position can be given. The location, however, can easily be deter-
mined from the detection information (which node has detected the
target last) and the velocity. The size of objects cannot be determined
using only a PIR sensor.

• Sensors do share information, both to track a target and to confirm
information that cannot be determined by a single sensor with a 100%
reliability, i.e. direction.

• The nodes report to a single base node. Receiving messages from the
base node is not yet implemented in the final tracking program. How-
ever, several programs have been used for testing purposes that can
perform bidirectional communication with a base station. To demon-
strate the operation of the tracking algorithm, the network was not
so large that the functionality for advanced network techniques (like
multihop) had to be implemented. The base station can be reached
from all nodes.

• The system cannot detect and handle disabled or removed nodes. This
can be added to the algorithm, for example, by providing nodes with
information about the neighbors of their neighbors. So when a node
is disabled it can simply be skipped in the algorithm.

• The system has no self-configuration of the network, so the addition
and removal (see above) of nodes cannot be detected. Extensions to
the network should be specified explicitly in the nodes. Because the
tracking algorithm uses relative information and only communicates
with its (two) neighbors, for the algorithm, there is no limit to the
number of nodes in the network.

• The program has no special functions to ensure low power operation.
As mentioned, the used PIR sensor draws its power from the node
batteries, so there are no extra batteries needed, this is a form of
power saving. Researchers at TNO and at TU Delft are working on an
implementation of t-mac on the Mica2, which can save up to 95% in

32

power only on communication. An addition to the tracking application
could be to simplify detection using the digital output of the PIR
sensor and wake up neighboring nodes from a sleep state after detection
of an object.

• The response time of the system was required to be 1

2
×

d
v
, with v = 1.4

m/s. This means that for d = 3 m a node should report movement
within 1

2
×

3

1.4
≈ 1 s. experiments show that the speed can be calculated

fairly accurate for a walking person, which means the delay between
detection and sending a tracking message << 1 s. Otherwise the speed
could not be calculated accurately.

Experiments with the object tracking system show that an object can be
tracked through the network and the speed of that object can be calculated.
Both target information as well as coordination of reporting to a base node
are handled within the sensor network, without the use of a base station.
Reviewing the requirements the presented object tracking system has the
following improvements over the “Compound Security Demonstrator”:

• communication between sensor nodes,

• cooperation between sensor nodes,

• independent operation, no need for a base station,

• scalability, the sensor network can be extended to a large number of
nodes.

The presented tracking system provides a good foundation for an object
tracking system that uses multiple sensors. Also the assumptions upon
which this system is based are realistic and usable in practice. The knowl-
edge gained in using non standard sensors and the basic communication
scheme can be used in other applications based on sensor networks as well.

8.2 Recommendations

Although the system presented in this report can be extended with many
features and all kinds of functions for networking, there are a few additions
which would greatly improve the usability.

Probably the most important one is localization for both the network topol-
ogy and the distance between sensors. With this addition the sensors can
be placed more or less at random, the distance between sensors does not
need to be constant, and a node’s neighbors do not have to be specified
in the software. At the same time, localization is one of the most difficult

33

challenges in sensor networks.

The second addition, which is relatively easy, is adding the possibility to
configure the network and detection parameters from a base station (typ-
ically a PC with a user interface). This addition provides an easy way to
(re)configure the network, add nodes and experiment with detection param-
eters.

Some other features that can be added include:

• multiple heterogeneous sensors (sensor fusion) for better detection,

• an orientation sensor (compass) to detect differences in sensor orien-
tation,

• multihop for base to network and network to base communication,

• robust packaging of the node and sensor for outdoor use and demon-
stration purposes.

8.3 Final remarks

The system created for my Master project provides an operational example
of an application of sensor networks. This system will be used in a demon-
stration for the Ministry of Defense in October 2004. TNO have asked me
to work for four more months to improve the object tracking, implement-
ing the second addition mentioned in the recommendations, improving the
algorithm and adding more network functionality.

34

Bibliography

[1] Berkeley university of california. http://www.berkeley.edu.

[2] Crossbow technology inc. http://www.xbow.com.

[3] A. Arora et. al. A line in the sand: A wireless sensor network for tar-
get detection, classification, and tracking. Technical report, Ohio State
University et. al., 2003.

[4] Holger Karl and Adreas Willig. A short survey of wireless sensor net-
works. Technical Report TKN-03-018, Technical Uiversity Berlen, Oc-
tober 2003.

[5] mica2 datasheet. http://www.xbow.com/Products/Product_pdf_

files/Wireless_pdf/6020-0042-0%5_A_MICA2.pdf.

[6] Tinyos project page at sourceforge. http://sourceforge.net/

projects/tinyos/.

[7] Tinyos. http://webs.cs.berkeley.edu/tos/.

[8] Tinyos tutorial lesson 1: Getting started with tinyos and nesc. http:

//www.tinyos.net/tinyos-1.x/dos/tutorial/lesson1.html.

[9] G.J.A. van Dijk, M.G. Maris, and A.J. Schoolderman. Compound secu-
rity demonstrator. Technical report, TNO-FEL, December 2003. version
1.0.

35

