CMOS Front-End for Micropower RF Wireless System

G

R. Rofougaran, I. Bhatti, T.H. Lin, F. Newberg, W.J. Kaiser UCLA Electrical Engineering

Outline

- Introduction to Wireless Integrated Network Sensors (WINS) Project: Network, Applications, Nodes
- Unique Transceiver Requirements
- RF Architecture:
 - Receiver: Preselector, LNA, Mixer, VCO and PLL Architecture

Ņ

- Transmitter: PA Architecture
- Future work: (WINS integration)
- Summary

Network Characteristics

- Dense node distribution
- Short range (<30m)

G

A

- Low bit rate (<100kbps) typical sensors systems are band limited
- Latency tolerant
- Compact cell
- 3 years life
- 100 μW average
- 3mW peak

Implement multihop for power reasons:

RF path loss:

$$P \propto \frac{1}{R^{lpha}} \quad (lpha \approx 3-5)$$

Relative system power advantage for N-hop chain:

$$\frac{P_{total}(N)}{P_{total}(1)} \approx \frac{1}{N^{(\alpha-1)}}$$

WINS Communication Requirements

U

G

A

- In the design of WINS communication system must consider:
 - Stringent power limitation \Rightarrow low power architecture
 - wireless microsensor applications \Rightarrow reduced data rate
 - Multihop network operation \Rightarrow node-to-node link budget is relaxed

	Specs	Extension	
Operation frequency	ISM band (902-928 MHz)	2.4 GHz	
Modulation scheme	binary FSK	4-FSK	
Channel spacing	500 kHz	250 ~ 500 kHz	
Tone frequency	100 kHz	60 ~100 kHz	
Data rate	10 kbps	1 ~ 100 kbps	
Frequency Accuracy	20 ppm	< 30 ppm	
Transmission power	-10 ~ 10 dBm	nominal: 0 dBm	
SNR required	< 10 dB (BER: 10e-3)	TBD	
Hopping rate	100 hops/sec	TBD	

WINS Communication Approaches

• Signaling: FSK

G

A

- allow power-efficient non-linear PA
- allow low power modulation and demodulation circuitry
- spectrum efficiency is not a main concern in most microsensor applications

• FSK Tone Frequency: 100kHz

 To minimize the impact of baseband 1/f noise and account for the inaccuracy of reference frequency source (20 ppm), the FSK tone frequency is chosen to be 100 kHz, independent of data rate.

• Channel Spacing: 250-500kHz

- 250 ~ 500 kHz; lower bound is set by the baseband channel-select filter design (avoid sharp transition from passband to stopband), upper bound is set by FCC regulation (at least 50 hopping channels are required)
- Path Loss:
 - assume *n*=4, *d*=30 m \Rightarrow maximum path loss ~ 92 dB
- Sensitivity (MDS, desired minimum detectable signal):
 - MDS = 10 dBm (maximum transmitting power) -92 dB (path loss) = -82 dBm

WINS Communication Approaches

• Noise Figure:

G

A

- NF = 174 $10 \times \log_{10}$ BW SNR_{min} + MDS 5 dB (margin) = 25 dB
- Linearity (IIP3):
 - With simple power control scheme and proper nodes distribution, the two-tone interfere is at -44 dBm; the IIP3 is calculated to be -16 dBm (with 4dB margin).
 - 2nd-order distortion (IP2) is mitigated by differential circuit architectures

WINS Nodes

WINS RF Modem Network Interface Memory Microcontroller State Machine DSP ADC Sensor Interface Sensors

 W

N S

WINS vs. Existing Wireless System

Characteristic	Wireless LAN	Cellular Telephony	WINS
Range	~ 200m	~ 5km	≤ 30m
Data Throughput	~ 2-10Mbps	~ 10kbps	≤ 100kbps

Conclusions:

 Range and bandwidth reduction : 60 - 80dB gain in link budget

Why Design a New Receiver?

G

• Performance specifications of receivers:

	Cellular	Bluetooth	WINS
Noise Figure	8dB	Est (- 26)	~ 25dB
Sensitivity	-102dBm	-70dBm	~ -80dBm
Data rate	~10 kbps	1Mbps	≤ 100kbps
Current consumption	35 - 40mA	≤ 20mA	~ 1 mA

- Challenge: Minimum noise figure and best sensitivity for long range communications.
- Specifications of the front-end receiver for WINS project:

Digital CMOS transistor Current consumption $\leq 200 \mu A$ Gain $\approx 20 - 25 dB$ Noise figure $\approx 20 dB$

• Challenge: Micro power for short range communications (30 m)

- Two receiver architecture has been developed :
- Multi stage architecture: Preselector /LNA/Mixer
- Single stage architecture: Preselector/Combined LNA and Mixer

Two Architectures

G

Multi stage: Gain achieved by

- **Preselector:** High Q elements
- LNA transistors gm: Small due to the small current and relatively small transistor sizes
- LNA output Impedance: High Q components to generate large impedance at the output
- Mixer input: High impedance

Single stage: Gain achieved by

- **Preselector:** High Q elements
- Mixer transistors gm: Small due to the small current and relatively small transistor sizes
- Mixer output Impedance: High impedance

Mixer is the only current user stage! \Rightarrow Gain and less NF

W

N

S

U C L A

Preselectors

•Filtering

W I N S

Half Circuits

W

N S

Gain/ Noise Measurements Single stage Architecture

U

G

A

W I N S

Gain/ Noise/ 1dB Measurements Multi stage Front-end

U

G

1-dB compression at -25dBm (effective power)

LNA input = -43dBvrms Mixer output = -17.85dBvrms Gain = 25 dB

> This front-end: At 1KHz: NF \approx 28dB At 25KHz: NF \approx 19.5 dB

V

Comparing the results at 1khz and 25 kHz					
 Multi stage Architecture (0.8 μm) 		 Single stage Architecture (0.6 μm) 			
	@1khz	@25khz		@1khz	@25khz
Gain	25 dB	24dB	Gain	30 dB	30dB
Noise	26 dB	19.5dB	Noise	27 dB	21 dB
IP3	-15 dBm	-15 dBm	IP3	-13 dBm	-13 dBm
1dB	-25 dBm	-25 dBm	1dB	-23 dBm	-23 dBm

W

N S

VCO Architecture

U

G

- HP CMOS 0.6 μm
- Cross-coupled PMOS
 transistors
 - isolated Nwell
 - less flicker noise
 - lower mobility
- Off-chip LTCC inductors
- MOSFET varactor tuning
- 3V, 150 μ A
- -100 dBc/Hz @ 100 kHz

W

N

10 % tuning range

Frequency Synthesizer Design

- Frequency synthesizer requirements:
 - switching time: less than 2 msec is adequate (depends on applications, usually latency tolerant)
 - frequency resolution: 250/500 kHz
 - low power operation: less than 1.5 mA drain current
- Frequency synthesizer techniques:
 - direct digital frequency synthesizer: fast switching, fine frequency resolution, but very high power (~1W, 12-bit, 100 MHz)
 - PLL: complex tradeoffs among frequency resolution, switching speed, and spurs; possible low power solution
- PLL architecture:

G

A

- integer-N architecture (wide channel spacing and relaxed switching time requirements permit this low power PLL architecture)
- Design strategies:
 - high-Q LC-VCO: enables low power and low phase noise performance

Integer-N PLL

$$\begin{split} f_{ref} &= f_{in}/R \\ f_{out} &= N. \ f_{ref} \\ N &= (M+1)S+(P-S)M \\ &= MP+S \\ f_{out} &= (MP+S)f_{ref} \end{split}$$

- To design lowpower:
- Wide channel spacing
- Relaxed switching time

 f_{ref} =250 kHz, f_{out} =902~928 MHz ⇒ N=3609~3711 ⇒ M=7, P=512, S=25~127 Dual-modulus divider (1/7,1/8) is the most power hungry component (operated at near 1GHz) in the PLL.

Modified Integer-N PLL Architecture

C L A

U

VCO Tuning

- CMOS varactor : 20-30% of tuning range to compensate for process and temperature variation
- sensitive to noise at VCO tuning node

- Switched-capacitor provides coarse tuning
- CMOS varactor : fine tuning (much less tuning range is required in LC-VCO)

W

N S

less sensitive to noise

PLL with Coarse Tuning Loop

U

G

N S

Л

Layout

W

N S

- HP 0.5um CMOS process
- Chip size: 2.6mm x 1.3mm

Transmitter Design

U

G

• Direct Modulation of VCO performed in Synthesizer Loop

- Loop bandwidth significantly less than frequency of modulation signal applied to VCO
- Mixerless design reduces power consumption
- Resistance to Injection Locking

U

G

- Goal: To achieve low output power with high efficiency
- FSK system allows for use of non-linear power amplifier resulting in greater efficiency
- Variable output power desirable in order to deliver required signal strength at receiver, leading to overall system efficiency
- Efficiency is difficult to maintain over variable power range
- Power dissipation of predriver is increasingly important as desired output power decreases
- Variable PA with output powers ranging from 7mW to .5mW with efficiencies of 43% to 10% currently under development

Output Power vs. Control Voltage

Efficiency vs. Output Power

W

N S

- WINS project RF components trade off sensitivity for greatly reduced power consumption
- A front-end receiver with a total current consumption of 140 μA has been developed and tested in 0.6 μm CMOS technology
- The front-end includes a preselector which provides gain and filtering before the LNA
- The receiver has: Gain = 30dB, NF = 16dB, 1-dB compression = -23dBm

Acknowledgment

- DARPA
- Scrantom Engineering, Inc. (SEI)
- Ms. M.Rofougaran, Dr. D. Pelhke