

A Micro-Power CMOS RF Front-end for Embedded Wireless Devices

R.Rofougaran, T. H. Lin, F.Newberg, W. J. Kaiser UCLA Electrical Engineering

Outline

- Introduction to Wireless Integrated Network Sensors (WINS) Project: Network, Applications, Nodes
- Unique Front-end Requirements
- **RF Architecture:** Preselector, LNA and Mixer Architecture
- Future work: (WINS integration)
- Summary

(Wireless Integrated Network Sensors) WINS

Consumer

Transportation systems

Medical instrument internetworking

WINS Applications

Defense security

Industrial controls

Network Characteristics

- Dense node distribution
- Short range (< 30m)
- Low bit rate (< 100kbps) (Typical sensor systems are band limited)
- Latency tolerant
- Compact cell
- 3 year life
- 100 μW average
- 3 mW peak

Implement multihop for power:

RF path loss:

$$P_{rec} \propto 1/R^{\alpha} (\alpha \approx 3 - 5)$$

Relative system power advantage for N-hop chain:

$$P_{tot}(N)/P_{tot}(1) \propto 1/N^{(\alpha-1)}$$

WINS Nodes

- WINS RF Modem
- Network Interface
- Memory
- Microcontroller
- State Machine
- DSP
- ADC
- Sensor Interface

Sensors

WINS vs. Existing wireless system

Characteristic	Wireless LAN	Cellular Telephony	WINS
Range	~ 200m	~ 5km	≤ 30m
Data Throughput	~ 2-10Mbps	~ 10kbps	≤ 100kbps

- Conclusions:
- Range and bandwidth reduction : 60 80dB gain in link budget

Why Design a New Receiver?

• Performance Specifications of receivers:

	Cellular	Bluetooth	WINS
Noise Figure	8dB	Est (- 26)	~ 25dB
Sensitivity	-102dBm	-70dBm	~ -70dBm
Data rate	~10 kbps	1Mbps	≤ 100kbps
Current consumption	35 - 40mA	≤ 20mA	~ 1 mA

- Challenge: Minimum noise figure and best sensitivity for long range communications.
- Specifications of the front-end receiver for WINS
 - **project:**Digital CMOS transistorCurrent consumption $\leq 200 \ \mu A$ Gain $\cong 20 25 dB$ Noise figure $\cong 20 \ dB$
- Challenge: Micro power for short range communications (30 m)

Receiver Architecture

Goal: 1mA entire receiver system peak current drain

- High-Q inductive loads
- Off chip integration: LTCC components

Differential Preselector/LNA

Gain achieved by:

- Preselector: High Q elements
- LNA transistors g_m: Small due to the small current and relatively small transistor sizes
 - LNA output Impedance: High Q components to generate large impedance at the output
- **Mixer input:** High impedance

Preselector

- Filtering
- Matching
 Choose L and C:

$$\omega_{res} = R / \sqrt{L((C_g + C_{total}) R^2 - L)}$$
$$R \to \infty \quad \omega_{res} \approx 1 / \sqrt{L(C_g + C_{total})}$$

Input impedance at ω_{res} :

$$R_{in} \approx L/R_{bias}(C_g || C_{total})$$

• Gain from V_s to $V_{gs:}$

Mixer

- Weak inversion
- Double-balanced Gilbert Cell
- Direct conversion

- 50 μ A core supply current at 3V
- Output bandwidth > 100kHz
- High output impedance

Test Setup

• Testing Preselector, LNA and Mixer:

Testing

VCO on LTCC substrate

Front-end with off-chip components

Gain Results

Gain = 25dB

LNA input = -43dBvrms Mixer output = -17.85dBvrms

1-dB compression at -25dBm (effective power)

Noise Measurement for Front-end

This front-end: At 1KHz: NF \approx 28dB At 25KHz: NF \approx 19.5 dB

1/f S_{VG} measurement (NMOS 100/0.6 um)

WINS Integration

• Low Temperature Co-fired Ceramic

Summary

- WINS project RF components trade off sensitivity for greatly reduced power consumption
- A front-end receiver with a total current consumption of 110 μA has been developed and tested in 0.8 μm CMOS technology
- The front-end includes a preselector which provides gain and filtering before the LNA
- The receiver has: Gain = 25dB, NF = 19.5dB, 1-dB compression = -25dBm,

Acknowledgment

- DARPA
- Scrantom Engineering, Inc. (SEI)
- Ms. M.Rofougaran, Dr. D. Pelhke,